Ensemble Supervised Classification Method Using the Regions of Interest and Grey Level Co-Occurrence Matrices Features for Mammograms Data
Breast cancer is one of the most encountered cancers in women. Detection and classification of the cancer into malignant or benign is one of the challenging fields of the pathology..
Our aim was to classify the mammogram data into normal and abnormal by ensemble classification method..Patients and
In this method, we first extract texture features from cancerous and normal breasts, using the Gray-Level Co-occurrence Matrices (GLCM) method. To obtain better results, we select a region of breast with high probability of cancer occurrence before feature extraction. After features extraction, we use the maximum difference method to select the features that have predominant difference between normal and abnormal data sets. Six selected features served as the classifying tool for classification purpose by the proposed ensemble supervised algorithm. For classification, the data were first classified by three supervised classifiers, and then by simple voting policy, we finalized the classification process..
After classification with the ensemble supervised algorithm, the performance of the proposed method was evaluated by perfect test method, which gaves the sensitivity and specificity of 96.66% and 97.50%, respectively..
In this study, we proposed a new computer aided diagnostic tool for the detection and classification of breast cancer. The obtained results showed that the proposed method is more reliable in diagnostic to assist the radiologists in the detection of abnormal data and to improve the diagnostic accuracy..
Iranian Journal of Radiology, Volume:12 Issue: 3, 2015
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
پرداخت با کارتهای اعتباری بین المللی از طریق PayPal امکانپذیر است.
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.