Demand forecasting in a Supply Chain using Machine Learning Algorithms

Message:
Abstract:
the purpose of this paper is to compare two artificial intelligence algorithms for forecasting supply chain demand. In first step data are prepared for entering into forecasting models. In next step, the modeling step, an artificial neural network and support vector machine is presented. The structure of artificial neural network is selected based on previous researcher's results. For measuring errors we use Mean squared error and we use another index for time which is used running the algorithms. The results show that artificial neural network can forecast more accurate meanwhile support vector machine is faster.
Language:
Persian
Published:
Journal of Modeling in Engineering, Volume:13 Issue: 41, 2015
Page:
127
https://www.magiran.com/p1450044  
سامانه نویسندگان
  • Shafiei Nikabadi، Mohsen
    Corresponding Author (1)
    Shafiei Nikabadi, Mohsen
    Professor Industrial Management Department, Semnan University, سمنان, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)