New Methods of Pruning Associative Classification Rules (Case Study: Rules Related to the Optimality of Location of Banks in Tehran City)
With the advance technology in discovery of data, data volume has increased. For this reason data mining methods, including Associative Classification for extracting knowledge from large data sources were used. At associative classification are used association rules for data classification. After classification rules generation, because large number of them, pruning methods are used to delete redundancy rules. In this research, the associative classification rules are used to determine relationship between the location of urban elements and optimality of location of bank branches and financial and credit institutions in Tehran. Because the location of the urban elements have a large impact on determining an optimal location for banks and optimal location of banks make greater profitability for them. After associative classification rules generation, four new method of pruning are being introduced to improve old ways that three methods reduce the number of rules and a method increases accuracy.
Geospatial Engineering Journal, Volume:8 Issue: 2, 2017
39 to 48  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!