A multi-objective genetic algorithm (MOGA) for hybrid flow shop scheduling problem with assembly operation

Abstract:
Scheduling for a two-stage production system is one of the most common problems in production management. In this production system, a number of products are produced and each product is assembled from a set of parts. The parts are produced in the first stage that is a fabrication stage and then they are assembled in the second stage that usually is an assembly stage. In this article, the first stage assumed as a hybrid flow shop with identical parallel machines and the second stage will be an assembling work station. Two objective functions are considered that are minimizing the makespan and minimizing the sum of earliness and tardiness of products. At first, the problem is defined and its mathematical model is presented. Since the considered problem is NP-hard, the multi-objective genetic algorithm (MOGA) is used to solve this problem in two phases. In the first phase the sequence of the products assembly is determined and in the second phase, the parts of each product are scheduled to be fabricated. In each iteration of the proposed algorithm, the new population is selected based on the non-dominance rule and fitness value. To validate the performance of the proposed algorithm, in terms of solution quality and diversity level, various test problems are designed and the reliability of the proposed algorithm is compared with two prominent multi-objective genetic algorithms, i.e. WBGA, and NSGA-II. The computational results show that the performance of the proposed algorithms is good in both efficiency and effectiveness criteria. In small-sized problems, the number of non-dominance solution come out from the two algorithms N-WBGA (the proposed algorithm) and NSGA-II is approximately equal. Also, more than 90% solution of algorithms N-WBGA and NSGA-II are identical to the Pareto-optimal result. Also in medium problems, two algorithms N-WBGA and NSGA-II have approximately an equal performance and both of them are better than WBGA. But in large-sized problems, N-WBGA presents the best results in all indicators.
Language:
English
Published:
Journal of Industrial and Systems Engineering, Volume:10 Issue: 1, Winter 2017
Pages:
132 to 154
magiran.com/p1700723  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!