Agrobacterium-Mediated Transformation of the Oryza sativa Thaumatin-Like Protein to Canola (R Line Hyola308) for Enhancing Resistance to Sclerotinia sclerotiorum
Canola is an agro-economically oilseed crop. Yield loss due to fungal disease of stem rot caused by Sclerotinia sclerotiorum is a serious problem in canola cultivation. Thaumatin-like proteins are large groups of the pathogenesis-related proteins which provide resistance to the fungal infection in response to invading pathogens and play a key role in plant defense system.
Transformation of the rice tlp into canola via Agrobacterium-mediated transformation and evaluation of the antifungal activity of the expressed TLP in the transgenic events on the S. sclerotiorum growth was subject to investigation.
Materials And Methods
The canola (R line Hyola308) was used for transformation experiment. The vector, pBITLPRA1, was used for the stable transformation. The PCR and southern blotting techniques were used to confirm transgene’s presence in the transgenic canola events. Antifungal activity of transgenic plants was evaluated by the radial diffusion and spore germination assays. T2 transgenic plants were evaluated by the intact leaf inoculation method in greenhouse assay.
In this study, pBITLPRA1 construct containing tlp gene was introduced into canola and the transformed plants were verified by PCR. The glucanase activity of tlp gene in T0 generation was measured and transgenic plants with high activity were assessed by Southern blot analysis to confirm the copy number of the gene. Also, antifungal activity of the single copy T0 transgenic plants against Sclerotinia sclerotiorum was evaluated by radial diffusion and spore germination assays. In greenhouse assay, evaluation of T2 transgenic plants by the intact leaf inoculation method demonstrated that following the infection with S. sclerotiorum, there was a significant reduction in the lesion’s diameter in transgenic lines compared to the non-transgenic ones.
These results revealed that expression of TLP has an inhibitory effect against fungus compared to non-transgenic plants both in vitro and in vivo (i.e., greenhouse condition). These transgenic lines could be used as the additional sources of disease resistance for canola breeding program.
Iranian Journal of Biotechnology, Volume:15 Issue: 3, Summer 2017
201 to 207  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 60 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 60 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!