Evaluation of Artificial Neural Network and Multiple Linear Regression Models to Estimate the Daily Missing data Flow (Runoff) in (Case Study: Santeh Gauging Station- Kordestan Province)
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Statistical analysis and forecast discharge data play an important role in management and development of water systems. The most fundamental issues of statistical analysis and forecast discharge in Iran are lack of data in long term period and lack of stream flow data in gauging stations. Considering the issues mentioned in this study, we tried to estimate the daily data flow (runoff) of Santeh gauging station in Kordestan province using the nearby hydrometric and meteorological stations data. This estimation occurred based on the sixteen different input combinations, including data of daily flow of hydrometric stations Safakhaneh and Polanian and daily runoff in Santeh precipitation gauging station. In this research, the daily flow estimation of the Santeh station in each of the months of the year was evaluated for sixteen different combinations and artificial neural network models and multiple linear regressions. The performance of each model was evaluated with the indicators RMSE, CC, NS and t-student statistic. The results showed good performance of both models but the performance of the artificial neural network model was better than the regression model in estimation of the daily runoff in the most months of the year. Mean error of artificial neural network and multiple linear regression models was respectively estimated as 6.31 and 8.07 m3/s in the months of the year. It should be noted that the artificial neural network, for each sixteen combination used, had better result than the regression model.
Keywords:
Language:
Persian
Published:
Journal of Hydrology and Soil Science, Volume:21 Issue: 4, 2018
Pages:
143 to 159
https://www.magiran.com/p1793789
سامانه نویسندگان
مقالات دیگری از این نویسنده (گان)
-
Analysis of Internal Pattern of Storms Using the Gordji Method (Case Study: Golestan Province)
*, Saina Vakili Azar, Saeed Jahanbakhsh-Asl
Journal of Water and Soil Resources Conservation, Spring 2025 -
Prediction of hydrological drought using the GRI index and linear random time series models (Study area: Ardabil Plain aquifer)
Seyed Mahdi Hoseini *, , Omid Babamiri
Journal of Hydrogeology,