Hydrogeochemical investigation and water quality assessment in the sarough watershed, Takab mining district

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
This study investigated the hydrogeochemistry and environmental water quality of rivers in Sarough watershed using the major ion chemistry and explored multivariate statistical methods for identification of processes which release the solutes in natural waters. Totally, 38 samples were collected along the main streams of the watershed. The mean concentrations of major cations (Na, K, Mg, Ca) and anions (Cl, NO3, CO3, HCO3, SO4) were measured about 15, 4.6, 10.5, 61, 30, 4.49, 89, 156 and 107 mg/l, respectively. The results indicated that the river waters in the Sarough watershed were neutral and fresh water in nature (mean values: pH=7.7 and TDS= 315.8 mg/l). Most of the water samples were categorized in hard and very hard water classes with mean value for TH=197 mg/l and were under-saturated regarding with major carbonates, sulfates and evaporate minerals in most of samples. The major water types were Ca–HCO3–SO4, Ca–Mg–CO3 and Ca–SO4–HCO3. The Na, Cl and NO3 concentration in all water samples fell within the accepted limit of national and international standards for drinking water. Nevertheless, Ca, Mg and SO4 content in some samples were higher than the maximum desirable limits. Schuler diagram showed that majority of the water samples were good and acceptable for drinking. Evaluating the quality of river water for irrigation purposes using Wilcox diagram and SAR, EC and RSC indices indicated that majority of the water samples were suitable for irrigation. The results of multivariate statistical techniques such as correlation coefficient matrix, CA and PCA indicated the strong association between Na-K-Cl-SO4 and Ca-Mg-CO3-TH. It was assumed that weathering of carbonates (limestone/dolomite formations, calcareous marl formation and travertine) in the area were common source of Ca, Mg and HCO3. Also, travertine springs were considered as active point sources which release these elements into the drainage system. Meanwhile, dissolution of halite and gypsum in red marl formations (lower part of Qom F. and Upper Red F.) were the main processes considered as the origin of Na, K, Cl and SO4 in river water of study area.
Language:
English
Published:
Geosciences Scientific Quarterly Journal, Volume:27 Issue: 106, 2018
Pages:
13 to 28
magiran.com/p1805983  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!