Transmission Expansion Planning in a Deregulated Power System Using Multiobjective Differential Evolution Algorithm

Author(s):
Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Transmission lines are widely used for transferring electrical energy from power plants to loads, interconnecting load centers and improving reliability of power systems. Due to recent society developments, the need for electrical energy has increased which in turn requires more investment in constructing additional electrical transmission lines. Power system restructuring and deregulation has increased uncertainties in transmission expansion planning and made investment in electrical transmission lines more complicated and less appealing for private parties. This paper proposes a new approach for transmission line expansion planning in deregulated networks. To do that, a multi objective programming problem which consists of various objective functions such as minimizing capital investment for constructing new transmission lines, minimizing congestion in transmission lines and maximizing the investment from private parties is suggested such that access to competitive, economic and reliable energy market is facilitated. To solve the proposed multi objective optimization problem, the Pareto differential evolution algorithm is used. Applying this algorithm to the proposed multi objective programming problem generates set of optimal plans that shows the best compromise between objective functions. The final plan, among the generated plans, is selected using a max-min fuzzy decision making. The proposed method is applied on the IEEE 24 bus test system and effectiveness of the proposed method is verified.
Language:
Persian
Published:
Iranian Journal of Electrical and Computer Engineering, Volume:15 Issue: 4, 2018
Page:
247
https://www.magiran.com/p1819659