Numerical simulation of wave-floating bodies interaction using a truly incompressible SPH method with artificial compressibility approach
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
In the present study, the numerical simulation of free-surface flow and wave-floating bodies interaction is performed by a truly incompressible smoothed particle hydrodynamics based on the artificial compressibility method (ACISPH). The two-dimensional governing equations in the primitive variables formulation using Chorin's artificial compressibility method are written in the Lagrangian reference frame to provide an appropriate incompressible SPH algorithm for computing the incompressible flows. An implicit dual-time stepping scheme is used for the time integration to be capable of time accurate analysis of unsteady flows. Unlike the weakly compressible SPH (WCSPH) method, the ACISPH method does not involve any approximate enforcement of the incompressibility condition that usually implies time step restrictions and spurious oscillations in the flow field. Unlike the projection SPH algorithm, the ACISPH method does not involve an iterative solution of the pressure Poisson equation and the pressure field is efficiently computed locally through the solution of the governing equations. The accuracy of the ACISPH method is demonstrated by solving the incompressible flow in a 2-D Hydrostatics tank. Then, the wave-floating bodies interaction is simulated and the results obtained are compared with the available experimental and numerical results. The study shows that the artificial compressibility-based ISPH (ACISPH) method applied is accurate and robust for simulating the wave-floating bodies interaction.
Keywords:
Language:
Persian
Published:
Journal of Solid and Fluid Mechanics, Volume:8 Issue: 1, 2018
Pages:
241 to 252
https://www.magiran.com/p1844948