Smile and Laugh Expressions Detection Based on Local Minimum Key Points
In this paper, a smile and laugh facial expression is presented based on dimension reduction and description process of the key points. The paper has two main objectives; the first is to extract the local critical points in terms of their apparent features, and the second is to reduce the system’s dependence on training inputs. To achieve these objectives, three different scenarios on extracting the features are proposed. First of all, the discrete parts of a face are detected by local binary pattern method that is used to extract a set of global feature vectors for texture classification considering various regions of an input-image face. Then, in the first scenario and with respect to the correlation changes of adjacent pixels on the texture of a mouth area, a set of local key points are extracted using the Harris corner detector. In the second scenario, the dimension reduction of the extracted points of first scenario provided by principal component analysis algorithm leading to reduction in computational costs and overall complexity without loss of performance and flexibility; and in the final scenario, a set of critical points is extracted through comparing the extracted points’ coordinates of the first scenario and the BRISK Descriptor, which is utilized a neighborhood sampling strategy of directions for a key-point. In the following, without training the system, facial expressions are detected by comparing the shape and the geometric distance of the extracted local points of the mouth area. The well-known standard Cohn-Kaonde, CAFÉ, JAFFE and Yale benchmark dataset are applied to evaluate the proposed approach. The results shows an overall enhancement of 6.33% and 16.46% for second scenario compared with first scenario and third scenario compared with second scenario. The experimental results indicate the power efficiency of the proposed approach in recognizing images more than 90 % across all the datasets.
Article Type:
Research/Original Article
Signal and Data Processing, Volume:15 Issue: 2, 2018
69 - 88  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.