Estimating the Parameters of Periodic Bivariate Compound Poisson Process by Inference for Margins Method

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
The non-homogeneous bivariate compound Poisson process with short term periodic intensity function is used for modeling the events with seasonal patterns or periodic trends. In this paper, this process is carefully introduced. In order to characterize the dependence structure between jumps, the Levy copula function is provided. For estimating the parameters of the model, the inference for margins method is used. As an application, this model is fitted to an automobile insurance dataset with inference for margins method and its accuracy is compared with the full maximum likelihood method. By using the goodness of fit test, it is confirmed that this model is appropriate for describing the data.
Language:
Persian
Published:
Journal of Statistical Sciences, Volume:13 Issue: 2, 2019
Pages:
461 to 482
https://www.magiran.com/p2019049  
سامانه نویسندگان
  • Sakhaei، Ali
    Corresponding Author (1)
    Sakhaei, Ali
    Assistant Professor statistics, Payame Noor University, تهران, Iran
  • Nasiri، Parviz
    Author (2)
    Nasiri, Parviz
    Full Professor Department of Statistics, Payame Noor University, تهران, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)