توسعه روش طبقه بندی دیتاست های نامتوازن با استفاده از الگوریتم های تکاملی چندهدفه

پیام:
چکیده:
طبقه بندی داده ها از مباحث اساسی علم مدیریت است که از رویکردهای مختلفی مورد بررسی قرار گرفته است. روش های هوش مصنوعی از مهمترین روش های طبقه بندی هستند که اغلب آنها تابع دقت کل را در ارزیابی عملکرد مد نظر قرار می دهند. از آنجاییکه در دیتاست های نامتوازن، این تابع، هزینه خطاهای پیش بینی را یکسان در نظر می گیرد، در این پژوهش علاوه بر تابع دقت کل، از تابع حساسیت نیز به منظور افزایش دقت در هر یک از کلاس های از پیش تعریف شده، استفاده شده است. به علاوه، بدلیل پیچیدگی فرآیند کسب اطلاعات از تصمیم گیرنده، از الگوریتم فرا ابتکاری NSGA II جهت استنتاج مقادیر پارامترها، (بردار وزن و سطوح برش بین کلاس ها) استفاده گردیده است. در هر تکرار، الگوریتم با استفاده از بردار وزن برآورد شده و دیتاست ها، امتیاز هر آلترناتیو را با تابع Sum Product محاسبه نموده و در مقایسه با سطوح برش تخمینی، آن آلترناتیو را به یکی از دسته ها تخصیص می دهد. سپس با استفاده از توابع برازش، دسته تخمینی و دسته واقعی را مقایسه نموده و این فرایند تا بهینه سازی پارامترها ادامه می یابد. مقایسه نتایج الگوریتم های NSGA II و NRGA، نشان دهنده کارایی بالای الگوریتم ارائه شده است.
نوع مقاله:
مقاله پژوهشی/اصیل
زبان:
فارسی
صفحات:
161 -183
لینک کوتاه:
magiran.com/p2076544 
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.