Robust Model Predictive Control for a Class of Discrete Nonlinear systems
This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the MPC’s stabilizing components; i.e. the local terminal cost function and the corresponding terminal set. The proposed control approach is applied to a CSTR. Simulation results show that the proposed robust MPC scheme is quite effective and it has a remarkable performance.