Solving a location-allocation problem by a fuzzy self-adaptive NSGA-II
This paper proposes a modified non-dominated sorting genetic algorithm (NSGA-II) for a bi-objective location-allocation model. The purpose is to define the best places and capacity of the distribution centers as well as to allocate consumers, in such a way that uncertain consumers demands are satisfied. The objectives of the mixed-integer non-linear programming (MINLP) model are to (1) minimize the total cost of the network and (2) maximize the utilization of distribution centers. To solve the problem, a fuzzy modified NSGA-II with local search is proposed. To illustrate the results, computational experiments are generated and solved. The experimental results demonstrate that the performance metrics of the fuzzy modified NSGA-II is better than the original NSGA-II.
-
Incorporating Sustainability in Temporary Shelter Distribution for Disaster Response by the LP-based NSGA-II
Hossein Shakibaei, Saba Seifi, Reza Tavakkoli-Moghaddam *
International Journal of Supply and Operations Management, Spring 2025 -
Modeling Artificial Intelligence Of Things On Blockchain to Improve Supply Chain Security
Paria Samadi Parviznejad, Fatemeh Saghafi *, Reza Tavakkoli-Moghaddam, Javid Ghahremani-Nahr
journal of Information and communication Technology in policing,