NON-LINEAR PROGRAMMING APPROACH AND GENETIC ALGORITHM FOR SOLVING A PRODUCTION -DISTRIBUTION PLANNING PROBLEM
Author(s):

### A.H. Nobil, S.H.R. Pasandideh *, H. Nabovati

Message:
Abstract:

Supply chain management and integration of its components are a key issue for sustainable economy. One of the most important in optimization supply chain modeling is production- distribution planning problem. Several authors have developed models for the production-distribution problem when only a percentage of solution procedure is in exact area. Most of these models were solved with the meta-heuristic method. In this paper, we are extended a production-distribution nonlinear programming problem in a two-echelon supply chain network, including manufacturers and distributors, and are solved with a mixed of exact solution and a meta-heuristic algorithm. The aim of this research is to determine the value of products delivered and the carrying amount of each vehicle such that the profit average, including sales price, production costs and transportation costs, is maximized. The model is for multiple distributors and all manufacturers in which all manufacturers are produced a type of product and are sent it to distributors. The mathematical model of the production-distribution problem is derived for which the objective function is proved to be convex, and the constraints being in linear forms are convex too. So, the proposed model is a convex nonlinear programming problem and its local maximum is the global maximum. Then, the proposed nonlinear programming problem is solved by two methods of a genetic algorithm and, Sequential Unconstrained Minimization Technique (SUMT) approach along with steepest descent method. The SUMT is the usual way in which constrained problems are converted to an unconstrained form and solved that way. It makes use of barrier methods as well to find a suitable initial point that over satisfies the inequality constraints. In this study, the genetic algorithm is used to validate the SUMT nonlinear programming approach. The numerical example is provided to illustrate the solution methods. Finally, future research and conclusion recommendations come in the last section of paper.

Keywords:

### Supply chain , production-distribution problem , nonlinear programming , steepest descent method , genetic algorithm

Article Type:
Research Note
Language:
Persian
Published:
Industrial Engineering & Management Sharif, Volume:35 Issue: 2, 2020
Pages:
119 - 128
magiran.com/p2126619
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
پرداخت با کارتهای اعتباری بین المللی از طریق PayPal امکانپذیر است.
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
• دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
• حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
• پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.