Inhibitory Effects of Silica Nanoparticles Loaded with Hematoporphyrin on Breast Cancer Cell Line

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background

Cancer is one of the main causes of death in the world. In recent years, many studies have been conducted on the usage of nanomaterials in cancer treatment. In previous studies, the anti-tumor effects of mesoporous silica nanoparticles (MSN) on cancer cells have been shown. The aim of this study was to evaluate the effect of MSN loaded with Hematoporphyrin (HpD) on the cell proliferation and invasion of MCF7 (Michigan Cancer Foundation-7) breast cancer cell line. The antioxidant effects of MSN loaded with HpD were also investigated.

Methods

In this study, using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, the proliferation and viability of cancer cells were studied after exposure to MSN loaded with HpD. The wound healing assay technique (migration test) was used for the assessment of cancer cells’ invasion. The antioxidant effects of MSN loaded with HpD were studied by DPPH (2,2-diphenyl-1-picrylhydrazyl) assay and FRAP (ferric reducing/antioxidant power) assay techniques.

Results

Our results showed that the viability and proliferation of breast cancer cell line MCF7 in the presence of silica nanoparticles loaded with hematoporphyrin (HpD) significantly declined (P = 0.02). After exposure to mesoporous silica nanoparticles (MSN) loaded with hematoporphyrin (HpD), the cancer cell invasion decreased (P = 0.025). Silica nanoparticles alone and loaded with hematoporphyrin (HpD) showed considerable cytotoxic activities against cancer cell lines (IC50 = 20 - 30 μg.mL-1). The most promising result was achieved for MSN loaded with hematoporphyrin (HpD) with the minimum IC50 value. It was found that the proliferation rate of MCF7 cells decreased after treatment with this compound in a dose-dependent manner. The assessments with DPPH assay and FRAP assay techniques showed that MSN and MSN loaded with HpD have antioxidant activities.

Conclusions

MSN loaded with HpD have an inhibitory effect on the growth of the MCF7 cell line. MSN alone and in combination with HpD have an inhibitory effect on cell invasion in the MCF7 cell line. MSN alone and loaded with HpD have antioxidant effects. These results indicate that MSN has the potential to be used in cancer treatment as a carrier for anticancer drugs.

Language:
English
Published:
Middle East Journal of Rehabilitation and Health Studies, Volume:5 Issue: 3, Jul 2018
Page:
4
magiran.com/p2133342  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!