Indicator of $S$-Hausdorff metric spaces and coupled strong fixed point theorems for pairwise contraction maps

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

In the study of fixed points of an operator it is useful to consider a more general concept, namely coupled fixed point. Edit In this paper, by using notion partial metric, we introduce a metric space $S$-Hausdorff on the set of all close and bounded subset of $X$. Then the fixed point results of multivalued continuous and surjective mappings are presented. Furthermore, we give a positive result on the Nadler contraction theorem for multivalued mappings in this space. In the following, by expressing pseudo-Banach-type pairs of mappings, we study the conditions for the existence of a unique coupled strong fixed point in these mappings. Pseudo-Chatterjae mapping $F:X times Xto X$ satisfies in [dleft( F(x, y), F(u, v) right) leq k max left{ dleft( x, F(u, v)right), dleft( F(x, y), uright) right}, ] where $x, v in A$, $y, u in B$ and $0 < k < frac{1}{2}$. Also, We define some quasi-Banach and Pseudo-Chatterjae contraction inequalities. In addition, we will prove theorems about coupled fixed points. Finally, several examples are presented to understand the our results.

Language:
English
Published:
New research in Mathematics, Volume:6 Issue: 23, 2020
Pages:
73 to 86
https://www.magiran.com/p2137192  
سامانه نویسندگان
  • Samei، Mohammad Esmael
    Author (2)
    Samei, Mohammad Esmael
    Associate Professor Department of Mathematics, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran, Bu-Ali Sina University, همدان, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)