Molecular Dynamic Simulation of Adsorption of tri-Bisphenol-A-Diglycidyl Ether on Montmorillonite
In this research, adsorption of six tri-bisphenol-A-diglycidyl ether oligomers on montmorillonite are investigated using molecular dynamics simulation method at 298, 323, and 348k. At the beginning of the simulation, the distance between oligomers and Montmorillonite is set greater than cut-off distance; but, the distance between oligomer chains is smaller than the cut-off distance. During the simulation, the oligomer chains are adsorbed on the surface and after temperature and pressure equilibration, sampling is done for data analysis. The results show that the adsorption of oligomer chains on Montmorillonite is done via etheric Oxygens of oligomer chains. The etheric oxygen has a partial negative charge and reacts sufficiently with positive calcium ions of Montmorillonite. The result of this interaction is the strong adsorption of oligomer chains on Montmorillonite. Increasing temperature causes an increase in distance between adsorbed oligomer chains, but, does not strong effect on adsorption of chains on surface.