Photo-degradation of P-Nitro Toluene Using Modified Bentonite Based Nano-TiO2 Photocatalyst in Aqueous Solution

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
In recent decades, Iran has been facing severe water deficiency. In all countries, industrial plants are the most water-consuming sectors; thus, industrial wastewater treatment is always a essential subject. Nitro-Toluene derivatives are extensively used in industries, especially the military industry, which itself has an abundant share in industrial wastewater contamination. These compounds are extremely dangerous for living beings and can have irreparable effects, so eradication of them in industrial wastewater is necessary. Photocatalytic processes are one of the particular approaches in industrial wastewater treatment from the advanced oxidation processes subdivision. One of the prominent and most widely used photocatalysts in this process is Titanium Dioxide (TiO2) . This research aims at the investigations for the modification of  TiO2/Bentonite (TB) catalysts for attaining more economical saving and degradation stabilization conditions. To achieve this goal, the Bentonite and TiO2 photocatalyst was synthesized by a co-precipitation procedure, and its catalytic activity on Para Nitro-Toluene (PNT) degradation was examined. The designed TB photocatalyst is made of 5, 10 and 20 % of TB. A suspension reactor and the spectrophotometry was applied for specifying the extent of the degradation. Characterization of modified catalyst was conducted by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and energy dispersive X-ray (EDX). The results highlight that with increasing TiO2 percent, degradation rate augmented, and the highest degradation was attained for TB 20% at 59%. However, Under the same conditions, for pure TiO2, the degradation rate is 64%, but with more TiO2 consumption and time. Finally, in order to further confirm the extent of the degradation, chemical oxygen demand (COD) test was performed on the TA20 sample. The results showed that about 53% of PNT has been converted to minerals.
Language:
English
Published:
International Journal of Engineering, Volume:34 Issue: 4, Apr 2021
Pages:
756 to 762
magiran.com/p2252216  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!