Influence maximization in complex social networks based on community structure

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Many real-world networks, including biological networks, internet, information and social networks can be modeled by a complex network consisting of a large number of elements connected to each other. One of the important issues in complex networks is the evaluation of node importance because of its wide usage and great theoretical significance, such as in information diffusion, control of disease spreading, viral marketing and rumor dynamics. A fundamental issue is to identify a set of most influential individuals who would maximize the influence spread of the network. In this paper, we propose a novel algorithm for identifying influential nodes in complex networks with community structure without having to determine the number of seed nodes based on genetic algorithm. The proposed algorithm can identify influential nodes with three methods at each stage (degree centrality, random and structural hole) in each community and measure the spread of influence again at each stage. This process continues until the end of the genetic algorithm, and at the last stage, the most influential nodes are identified with maximum diffusion in each community. Our community-based influencers detection approach enables us to find more influential nodes than those suggested by page-rank and other centrality measures. Furthermore, the proposed algorithm does not require determining the number of k initial active nodes.
Language:
English
Published:
Journal of Industrial and Systems Engineering, Volume:13 Issue: 3, Summer 2021
Pages:
16 to 40
https://www.magiran.com/p2273382  
سامانه نویسندگان
  • Author (2)
    Mohammad Fathian
    Professor Ecommerce department, Iran University of Science and Technology, Tehran, Iran
    Fathian، Mohammad
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)