A New Preprocessing Method for Rumor Detection in Social Networks based on LSTM-CNN

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Recently, using social networks increases and people propagate their information through this networks. One of the most important challenges in these networks is sentiment attack, in which the attacker spreads rumors to influence users. Therefor rumor detection become important and attracts expanding research attention. Most of the previous works using deep neural networks for rumor detection without special preprocessing but we propose a new method for preprocessing data before learning which improve results. we use LSTM-CNN architecture with cyclical learning rate to detect Persian rumors. Beside that we investigate BERT model for Persian tweets. Our results demonstrate the effectiveness of this approach for English and Persian rumor detection.

Language:
Persian
Published:
Journal of Command and Control Communications Computer Intelligence, Volume:4 Issue: 1, 2021
Pages:
38 to 51
https://www.magiran.com/p2276750  
سامانه نویسندگان
  • Shirazi، Hossein
    Corresponding Author (2)
    Shirazi, Hossein
    Professor Faculty of Electrical and Computer, Malek-Ashtar University Of Technology, تهران, Iran
  • Dadashtabar Ahmadi، Kourosh
    Author (3)
    Dadashtabar Ahmadi, Kourosh
    Assistant Professor AI, Malek-Ashtar University Of Technology, تهران, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)