Synthesis and Characterization of the BaMgAl10O17:Eu2+ Scintillator Nanoparticles and its Investigation as Beta Detector
In this research, doped and undoped BaMgAl10O17 nanoparticles were synthsized using a new simple combustion synthetic method. A hybrid fuel consisting of urea and glycine was utilized in absence of reductive atmosphe .The morphology, structure, purity of sample phases and the features of nanoparticles light-glowing were investigared using field emission scanning electron microscope (FE-SEM), X-Ray Diffraction (XRD) pattern, and Photoluminescence (PL). The effect of urea fuel was studied either solely or mixed with glycine for the dopant reduction. The results of morphology and X-ray diffraction imply narrow-bar-structured rice with an approximated dimension of 45 - 65 nm with roughly high purity. In the synthesized doped europium with urea hybrid fuel and glycine, the photoluminescence emission spectrum is observed within the wavelengthrange of 400-500 nm centered at 447 nm. The scintillation responses of the samples to the 90Sr beta and 241Am gamma radiation sources and the ,discrimination capability of beta and gamma emissions in the 90Sr/90Y sources are investigated. The results showed that the activated nanoparticles having doped Eu2+ have a good sensitivity to bate particles and. can be an appropriated alternative for detection applications of beta particles in the spaces combined with gamma photons and beta particles.