Optimizing Extreme Learning Machine Algorithm using Particle Swarm Optimization to Estimate Iron Ore Grade

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Scientific uncertainties make the grade estimation very complicated and important in the metallic ore deposits. This paper introduces a new hybrid method for estimating the iron ore grade using a combination of two artificial intelligence methods; it is based on the single layer-extreme learning machine and the particle swarm optimization approaches, and is designed based on the location of the boreholes, depth of the boreholes, and drill hole information from an orebody, and applied for the ore grade estimation on the basis of a block model. In this work, the two algorithms of optimization clustering and neural networks are used for the iron grade estimation in the Choghart iron ore north anomaly in the central Iran. The results of the training and testing the algorithms indicate a significant ability of the optimized neural network system in the ore grade estimation.

Language:
English
Published:
Journal of Mining and Environement, Volume:12 Issue: 2, Spring 2021
Pages:
397 to 411
https://www.magiran.com/p2285262  
سامانه نویسندگان
  • Fathi، Mahdi
    Author (1)
    Fathi, Mahdi
    Researcher Mining Engineering Department, Faculty of Technical and Engineering, Imam Khomeini International University, Qazvin, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)