Numerical and experimental study of the combination of labyrinth weir with orifice and its effect on discharge coefficient
The combination of a labyrinth weir with an orifice is a proper solution for floating material to pass over the weir and transfer sediment through the orifice. Additionally, creating a slot in the overflow wing leads to higher discharge. This study examined four discharges (5, 10, 15, and 20 liters per second) with channel width and height of 30 and 40 cm in trapezoidal-orifice, square-orifice, and triangular-orifice labyrinth weirs in the laboratory and using Flow3D with RNG k-epsilon (k-ε) turbulence model, the results were compared with one another. Comparing the discharge flow over weirs and measuring the discharge coefficient among the mentioned models showed that the triangular-orifice labyrinth weir had the highest discharge rate. Moreover, the increased Ht/P ratio (Ht represents total hydraulic head; P denotes weir height) for all models resulted in the increased discharge coefficient. Due to the efficiency of this type of weirs, the highest discharge coefficient was obtained at low Ht/P ratios. At lower ratios, since there was free flow, the coefficient of weir discharge increased, and as the ratio increased, the weir was partially submerged. Furthermore, for the weir design, the best Ht/P ratio was between 0.13 to 0.41, and the maximum discharge coefficient (Cd = 1.2) was within this range.
-
Investigating the Energy Loss in the Dentated Flip Bucket and Dentated Triangular Sill Spillways in Laboratory and Numerical Conditions
M. Niroubakhsh, A.R. Masjedi*, M. Heidarnejad, A. Bordbar
Journal of Hydrology and Soil Science, -
Quantitative simulation of diverged flow using machine learning techniques and FLOW3D numerical modeling
Iman Karimi Sarmeydani, *, Aslan Egdernezhad
Irrigation and Drainage Structures Engineering Research, -
Laboratory study of the effect of the threshold angle of triangular cup overflows on the stability of the rock in the downstream
Mehdi Sayyahi, Alireza Masjedi *, , Mohammad Heydarnejad, Aslan Egdarnejad
Irrigation & Water Engineering,