Fuzzy hypersoft sets and its weightage operator for decision making
Article Type:
Research/Original Article (دارای رتبه معتبر)

Hypersoft set is an extension of the soft set where there is more than one set of attributes occur and it is very much helpful in multi-criteria group decision making problem. In a hypersoft set, the function F is a multi-argument function. In this paper, we have used the notion of Fuzzy Hypersoft Set (FHSS), which is a combination of fuzzy set and hypersoft set. In earlier research works the concept of Fuzzy Soft Set (FSS) was introduced and it was applied successfully in various fields. The FHSS theory gives more flexibility as compared to FSS to tackle the parameterized problems of uncertainty. To overcome the issue where FSS failed to explain uncertainty and incompleteness there is a dire need for another environment which is known as FHSS. It works well when there is more complexity involved in the parametric data i.e the data that involves vague concepts. This work includes some basic set-theoretic operations on FHSSs and for the reliability and the authenticity of these operations, we have shown its application with the help of a suitable example. This example shows that how FHSS theory plays its role to solve real decision-making problems.

Journal of Fuzzy Extension and Applications, Volume:2 Issue: 2, Spring 2021
163 to 170
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!