Application of Machine Learning Models in Spatial Estimation of Soil Phosphorus and Potassium in SomeParts of Abyek Plain
Modeling and mapping of plants nutrient elements in soil has importance in increasing the productivity of agriculture and achieving sustainable development. The aim of this research was to prepare digital maps of two nutrients, namely, available phosphorus (Pav) and exchangeable potassium (Kex) using machine learning models (MLM) i.e., random forest (RF), cubist (CB), support vector regression (SVR) and k-nearest neighborhood (k-NN) at two depths of 15-30 and 0-15 cm in a part of Abyek Plain. In this regard, 278 soil profiles were dug, sampled from the desired horizons, and samples were analyzed. MLM performance was implemented by 10-fold cross-valuation. The modeling results demonstrated that the RF model had the highest accuracy and minimum error compared to the other three models in spatial estimation of available Pav and Kex at the two studied depths. According to the results, for Pav at a depth of 0-15 cm, CCC statistics values of 0.84, 0.74, 0.48 and 0.35 and NRMSE values of 0.38, 0.54, 0.70, and 0.80 belonged to RF, CB, k-NN, and SVR, respectively. For Kex at the same depth, CCC values were 0.82, 0.72, 0. 70, 0.47 and NRMSE 0.25, 0.34, 0.36 and 0.45, by RF, CB, SVR, and k-NN models, respectively. Similar results were obtained for 15-30 cm layer. The relative importance of environmental variables showed that soil covariates had a more effective role in the spatial estimation of Pav and Kex than other environmental variables. According to the estimated maps of the two elements and the predominance of agricultural land uses, major parts of the area are Pav deficient based on standard amounts. Therefore, to increase productivity and improve management of soil fertility, use of phosphate fertilizers is recommended under the supervision of soil experts.
-
Feasibility study of developing rainfed fig orchards in sloping lands using global soil database (Case study: Abaraq dry lands, Kerman)
Ebrahim Asadi Oskouei *, Asghar Rahmani, Sayed Rohollah Mousavi, Bahareh Delsouz Khaki
Pomology Research Scientific Journal, Spring-Summer 2024 -
Land suitability evaluation for Wild sheep (Ovis orientalis) habitat (a case study in Khabr National Park)
Masoud Salari, *, Ali Salajegheh
Journal of Range and Watershed Management, Summer 2025 -
Digital mapping of soil texture components in the Sirjan region using machine learning models
Elham Mehrabi Gohari *, Roghaye Shahriyaripour, Ahmad Tagabadipoor,
Journal of Range and Watershed Management, Summer 2025 -
Uncertainty and Spatial mapping of soil salinity and sodicity using machine learning methods in three different management depths in Abyek region
Azam Jafari, *, Zahra Rasaei
Iranian Journal of Soil and Water Research, Jun 2025