Hydrotime model: an indicator for assessing drought stress tolerance of different quinoa genotypes at the germination stage

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Germination is the most vital period in the plant life cycle that is influenced by various environmental and genetic factors. Among environmental factors, drought stress can greatly affect the germination and emergence of seedlings. The tolerance to this stress in the early stages of plant development is very important and seeds that can germinate in these conditions will have a successful establishment, proper density and high yield. Therefore, knowing the drought tolerance threshold in different genotypes of a plant can be very useful in recommending their cultivation in different regions. The hydrotime model is one of the common experimental models in studying the effects of drought stress on seed germination. This model has three parameters including base water potential, hydrotime coefficient and sigma, which indicate drought tolerance, germination rate and germination uniformity, respectively. These coefficients, especially the base water potential, can be used to introduce genotypes for cultivation in areas with different drought levels. Therefore, this study was conducted to investigate the response of different quinoa genotypes to drought stress at the germination stage with the help of hydrotime model coefficients.

Material and methods

To investigate the effect of drought stress on seed germination of different quinoa (Chenopodium quinoa Willd) genotypes, a factorial experiment was designed and conducted in a completely randomized design with four replications in the seed laboratory of Gorgan University of Agricultural Sciences and Natural Resources in 2019. For the germination test, 4 replicates of 25 seeds of each genotype were placed in a petri dish with a diameter of 8 cm on a layer of filter paper which added 3 ml of solutions prepared in different water potentials (0, -0.4, -0.8, -1.2 and -1.6 MPa) in an incubator at 25 °C. Depending on the germination rate, in the first days after the onset of germination, the number of germinated seeds was counted three to five times per day; with decreasing the germination rate, the number of counts was reduced to two times per day. The germination criterion was the radicle existence of one millimeter or more. The hydrotime model was used to investigate the germination response of quinoa genotypes to drought stress.

Results and discussion

The results showed that all genotypes had high germination up to -0.4 MPa and their average germination percentage was above 90%; But as the water potential became more negative, the difference between the germination percentage of genotypes increased. According to the hydrotime model, there was a significant difference between different quinoa genotypes in terms of base water potential for 50% germination (ψb50), hydrotime coefficient (θH) and germination uniformity (σψb). The value of the ψb50 parameter ranged from -1.58 in genotype2 to -1.95 in genotype3. This indicates that quinoa is drought tolerant at the germination stage compared to sunflower, barley, wheat, safflower and canola. The lowest and highest hydrotime coefficients were observed in genotypes2 and 3 with 16.83 and 26.08 MPa/h, respectively (with an average of 20.93 MPa/h). Quinoa hydrotime coefficient is lower than rapeseed, wheat and safflower; In other words, the germination rate of the seeds of this plant is higher compared to the mentioned crops. The reason for this may be related to the size of the seed. The lowest germination uniformity was in genotype 3 (0.68 MPa) and the highest value observed in genotype 7 (0.46 MPa). The hydrotime and sigma coefficients are considered as indicators of germination rate and uniformity. The lower values of these coefficients are indicated the higher the germination rate and uniformity of the genotype, the faster the canopy closure and the higher yield.

Conclusion

In general, the results of this study show that the seeds have a high germination rate and with a high tolerance to drought stress at the germination stage; This increases the chances of faster establishment in the water shortage conditions. Also, the ability to tolerate drought in the germination stage of quinoa reduces the need for water consumption in this stage, which can be very useful and practical in developing management plans that lead to increased water use efficiency.

Language:
Persian
Published:
Journal of environmental stresses in crop sciences, Volume:15 Issue: 2, 2022
Pages:
459 to 469
magiran.com/p2438392  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!