Evaluation of Different Levels of Drip Irrigation Water on Yield and Yield Components in Canola

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction 

Drought stress is the most important environmental factor limiting growth and development of plants worldwide. Growth reduction due to drought stress has been reported more than other environmental stresses. So far, many studies have been conducted on the relationship and correlation between important agronomic traits in rapeseed, which have introduced 1000-grain weight, number of seeds per pod and number of pods per plant as the most important traits with high correlation in yield. The results showed that the application of drought stress had an effect on the yield components of sesame and the cultivars that were more sensitive to drought stress had a greater decrease in their yield. The aims of this study were to investigate (1) the effect of consumed water volume as the independent variable on other variables of the study, and (2) the effect of total independent variables (yield components and other independent factors) on yield and water productivity (dependent variables). Finally, the most important independent variables affecting water productivity and the most sensitive variables to the amount of consumed water were determined.

Materials and Methods

In order to achieve aforementioned objectives of this study, an experiment was conducted during two growing season of 2011-2011 and 2010-2011 in Behbahan Agricultural Research Station. The experiment was conducted as randomized complete block design with 4 replications. The applied amount of water in drip irrigation was composed of four levels of 50, 75, 100 and 125% water requirement in main plots and two canola varieties Hyola 401 and RGS003 in sub plots were placed.

Results and Discussion 

The results of the analysis of variance of the regression model showed that the higher absolute value of beta coefficients and t-statistic of each independent variable caused that variable to be introduced as the most sensitive independent variable affecting the dependent variable. Therefore, the independent variable of water volume, with beta coefficient of 0.860 and t-statistic of 13.246 had the greatest effect on plant height variable. In terms of yield, the studied variables (the number of pods per plant, the number of seeds per pod, and 1000-seed weight, consumed water volume, flowering period, growth period and plant height) showed 74.1% of variation (R2 = 0.741) of dependent variable (Yield of canola). The consumed water volume with the highest absolute value of beta coefficient of 0.563 and t-statistic with 2.967 had the most significant effect on yield at the level of 1%. Among the dependent variables, the consumed water volume with the highest absolute value of beta -1.013 and t-statistic at -12.415 had the most significant effect on water productivity at the level of 1%. consumed of water volume with the highest absolute value of beta coefficient of 0.563 and t-statistic with 2.967 had the most significant effect on performance at the level of 1%. The results of Pearson correlation coefficient showed that the highest correlation between the number of pods per plant and seed per pod with both plant height were calculated to be 0.763 and 0.849, respectively, indicating that increasing plant height was effective in increasing the number of pods per plant and seed per pod.

Conclusion

The results of analysis of variance of regression model showed the effect on volume of consumed water as an dependent variable through other variables (number of pods per plant, number of seeds per pod, yield, water productivity, 1000-seed weight, flowering period, growth period and plant height). Results showed a significant effect of all variables at the level of 1%, except for the variable of flowering period which had a significant effect but just at 5%. The volume of consumed water by r= 66.2% on grain yield variation in the pods, had the most significant effect on yield components. Therefore, seed number in the pods received the most negative effect from reducing water consumption due to drought stress. With increasing the growth period of canola, water productivity showed a significant decrease at 1%. The results of Pearson correlation coefficient showed that grain water productivity had a negative and significant correlation at the level of 1% with all variables. The highest correlation between water productivity (r = -0.939) was calculated with volume of consumed water, which indicates the importance of reducing water consumption in increasing canola water productivity.

Language:
Persian
Published:
Journal of water and soil, Volume:36 Issue: 3, 2022
Pages:
333 to 349
magiran.com/p2485281  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!