Machine Learning Models for Estimating Actual Evapotranspiration with Limited Data
Article Type:
Research/Original Article (دارای رتبه معتبر)

The present study compared various empirical and data-driven algorithms to predict Actual Evapotranspiration (AET) using various hydro climatic variables. The AET over semi-arid climatic conditions of Hyderabad, Telangana, India, and Waipara (New Zealand) was estimated using different empirical methods-based PET using Budyko and Turc models. Modelled PET from five data-driven algorithms, such as Long short-term memory neural networks (LSTM), Artificial Neural Network (ANN), Gradient Boosting Regressor, Random Forest, and Support Vector Regression were trained to predict AET using meteorological variables. The results show simple empirical-based AET models, Budyko and Turc, can estimate AET very well. The results indicated that 99% accuracy could be achieved with all climatic input, whereas accuracy drops to 86% with limited data. Both LSTM and ANN models based on PET have been noted as the most robust models for estimating AET with minimal climate data. It was observed that the meteorological variables of temperature and solar radiation have more significant contributions than other variables in the estimation of AET. In addition, the effects of the meteorological variables were found to be essential and effective in the estimation of AET. The research findings of the study reveal that under limited data availability, the best input combinations were identified as temperature and wind speed for estimating PET; temperature, wind speed, and precipitation for estimating AET for semi-arid climatology.

Sustainable Earth Review, Volume:2 Issue: 3, Sep 2022
28 to 46  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!