On the Prediction of Discharge Coefficient for Sluice Gates under Submerged Flow Conditions using Soft Computing Techniques

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Prediction of flow discharge coefficient, Cd, for a sluice gate under free and submerged flow conditions is one of the essential issues in hydraulics. In recent years, various semi-empirical equations have been developed in order to predict Cd for a sluice gate that application of those formulas under submerged flow conditions suffered from large errors. The aim of the present research is to use Gaussian Process Regression (GPR) and Support Vector Machine (SVM) used in soft computing techniques, so that estimating Cd in submerged flow conditions and comparing the results with quasi-experimental methods are of interest, herein. For this purpose, an experimental dataset comprised of 122 data points were used to feed the methods utilized. Different combinations of dimensionless parameters were then prepared and the performance of the afore mentioned methods were assessed. The results showed that SVM with input parameters of 𝑦𝑡⁄𝑤, 𝑦0⁄𝑤, 1/𝐹𝑟2 and S by the values of Root Mean Square Error (RMSE=0.017), correlation coefficient (R=0.97) and Nash-Sutcliffe Equivalent (NSE=0.95) had a better performance than GPR and other semi-empirical approaches, indeed.

Language:
Persian
Published:
Journal of Modeling in Engineering, Volume:20 Issue: 71, 2022
Pages:
1 to 12
https://www.magiran.com/p2549871  
سامانه نویسندگان
  • Mohammadi، Mirali
    Corresponding Author (2)
    Mohammadi, Mirali
    Associate Professor Civil Engineering, University Of Urmia, ارومیه, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)