Boiling Heat Transfer in Copper Foam Bilayers in Positive and Inverse Gradients of Pore Density

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Gradient metal foam is an advanced heat transfer material that decreases resistance to bubble escape and enhances the transfer of boiling heat. In this study, boiling heat transfer and bubble behavior were studied in an experimental set-up with copper foam bilayers configurated either in positive or inverse gradients, utilizing deionized water as working fluid. Positive gradient refers to arranging metal foam layers with high pore density at the bottom, above the heat source, and low pore density on the top. Results show that the heat transfer is higher for gradient metal foam surfaces, of 6.14×105 W/m2, versus a uniform metal foam surface, of 3.94×105 W/m2. For the positive gradient configuration, boiling heat transfer performance first increased with the pore density, then decreased when the pore density was higher than 60 pores per inch (PPI). By contrast, for the inverse gradient, the heat transfer performance was nearly constant with increasing pore density. At the low pore density, the inverse gradient performed better than the positive gradient during the whole boiling process. At high pore density, the positive gradient structure performed better in heat transfer at the early boiling stage. Three main types of bubble escape were observed: For the positive gradient bilayer, the bubbles moved up or down without lateral interference. In contrast, for inverse gradient, the bubbles mostly escape from the sides, which is easy to induce bubble merging. The inverse gradient surface generates larger bubbles, while the positive gradient surface produces a higher frequency of bubble detachment. Accordingly, two liquid replenishment models are proposed: for the positive gradient, external liquid replenishes from the side into the copper foam, while for inverse gradient, the liquid is mainly replenished from the top.
Language:
English
Published:
Journal Of Applied Fluid Mechanics, Volume:16 Issue: 5, May 2023
Pages:
973 to 982
magiran.com/p2552162  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!