Identifications of developmental dysgraphia on the basis of dynamic handwriting features
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Developmental disorders are regularly observed in developmental writing skills (developmental dysgraphia) with considerable concerns. Physicians do their diagnosis on the basis of the juvenile’s written products as well as the attitudes and feedback taken from their teachers. This is a very laborious process and yet subjective in nature. Consequently, many juveniles suffering from this defect, particularly those with lower levels of the disorder remain undiagnosed. The aim of the present work was to find a new method for the automatic identification of dysgraphia even at minute levels. Utilizing the most sensitive pen tablet available to gather the desired dataset, we could extract all the considered datasets, i.e. temporal, spatial, kinematic, and pressure parameters with the greatest possible accuracy. On the whole, 102 students (both male and female) from the second, third, and fourth grades of primary schools were participated in the data collection phase by being asked to write a short paragraph. 51 students, in an age range of eight to ten years, were participated in each group, i.e. dysgraphic and non-dysgraphic. Next, a huge set of features (more than two thousand features) was extracted in the preprocessing phase. In the feature selection phase, we eventually ended up with sixteen features that proved to be the most effective in diagnosing dysgraphia. To distinguish between the dysgraphic and non-dysgraphic students, three different types of classifiers, i.e. random forests, AdaBoost classifiers, and support vector machines (SVM) were considered and compared. For the prediction of dysgraphia based on incessant handwriting features, the SVM was revealed to be the best model with a classification performance accuracy of 93.65%. Our work exhibited that online handwriting features including time, jerk, and altitude/azimuth may be utilized to automatically reveal dysgraphia in juveniles with this writing disorder.
Keywords:
Language:
English
Published:
International Journal Of Nonlinear Analysis And Applications, Volume:14 Issue: 1, Jan 2023
Pages:
3179 to 3188
https://www.magiran.com/p2563391
سامانه نویسندگان
مقالات دیگری از این نویسنده (گان)
-
Phenomenology of Family Support in Gender Dysphoria
Fahime Akhlaghi Buzani, Zanireh Salimi, , Zohreh Mahdianpour
Shiraz Emedical Journal, Apr 2025 -
A Rare Case of Illness Anxiety Disorder: Fear of Developing Appendicitis
Mahtabalsadat Mirjalili, Peivand Jahanbin, *
Govaresh, Autumn 2024