Evolutionary Interval Type-2 Fuzzy Rule Learning Approaches for Uncertain Time-Series Prediction

Message:
Article Type:
Research/Original Article (بدون رتبه معتبر)
Abstract:
This study presents Interval Type-2 Fuzzy Evolutionary models to manage uncertainty in the process of uncertain time-series prediction. This study presents two type-2 fuzzy evolutionary models for rule extraction that were proposed: 1) Evolutionary Interval Type-2 Fuzzy Rule Learning (EIT2FRL), and 1) Evolutionary Interval Type-2 Fuzzy Rule-Set Learning (EIT2FRLS). A ROC curve analysis was applied for performance evaluation, and the results were validated using a 10-fold cross-validation technique. The results reveal that the proposed methods have an AUC of 0.96 for EIT2FRLS and 0.93 for EIT2FRL proposed methods. The results are promising for knowledge extraction in uncertain circumstances, predicting uncertain patterns prediction, and making suitable strategies and optimal decisions.
Language:
English
Published:
Signal Processing and Renewable Energy, Volume:7 Issue: 1, Winter 2023
Pages:
27 to 39
https://www.magiran.com/p2573914  
سامانه نویسندگان
  • Corresponding Author (1)
    Aref Safari
    .Ph.D Department of Computer engineering, Central Office, Islamic Azad University, Tehran, Iran
    Safari، Aref
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)