A MILP Model Incorporated With the Risk Management Tool for Self-Healing Oriented Service Restoration
Article Type:
Research/Original Article (دارای رتبه معتبر)
The inevitable emergence of intelligent distribution networks has introduced new features in these networks. According to most experts, self-healing is one of the main abilities of smart distribution networks. This feature increases the reliability and resiliency of networks by reacting fast and restoring the critical loads (CLs) during a fault. Nevertheless, the stochastic nature of the components in a power system imposes significant computational risk in enabling the system to self-heal. In this paper, a mathematical model is introduced for the self-healing operation of networked Microgrids (MGs) to assess the risk in the optimal service restoration (SR) problem. Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) and their stochastic nature besides the distributed generation units (DGs), the ability to reconfiguration, and demand response program are considered simultaneously. The objective function is designed to maximize the restored loads and minimize the risk. The Conditional Value-at-Risk (CVaR) is used to calculate the risk of the SR as one of the most efficient and famous risk indices. In the general case study and considering $\beta $ equal to the 0, 1, 2, 3, and 4, expected values of SR for the risk-averse problem is 21.2, 20, 19.3, 19.1, and 19\% less than the risk-neutral problem, respectively. The formulation of the problem is mixed-integer linear programming (MILP), and the model is tested in the modified Civanlar test system. The analysis of several case studies has proved the performance of the proposed model and the importance of risk management in the problem.
Journal of Operation and Automation in Power Engineering, Volume:12 Issue: 1, Spring 2024
1 to 13
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!