Wound healing effects of dexpanthenol-loaded core/shell electrospun nanofibers: Implication of oxidative stress in wound healing

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Objective (s)

Knowing the detrimental role of oxidative stress in wound healing and the anti-oxidant properties of Dexpanthenol (Dex), we aimed to produce Dex-loaded electrospun core/shell nanofibers for wound healing study. The novelty was measuring oxidative stress in wounds to know how oxidative stress was affected by Dex-loaded fibers.

Materials and Methods

TPVA solution containing Dex 6% (w/v) (core) and PVA/chitosan solution (shell) were coaxially electrospun with variable injection rates of the shell solution. Fibers were then tested for physicochemical properties, drug release profile, and effects on wound healing. Levels of tissue lipid peroxidation and superoxide dismutase activity were measured.

Results

Fibers produced at shell injection rate of 0.3 ml/hr (F3 fibers) showed core/shell structure with an average diameter of 252 nm, high hydrophilicity (swelling: 157% at equilibrium), and low weight loss (13.6%). Dex release from F3 fibers seemed to be ruled by the Fickian mechanism based on the Korsmeyer-Peppas model (R2 = 0.94, n = 0.37). Dex-loaded F3 fibers promoted fibroblast viability (128.4%) significantly on day 5 and also accelerated wound healing compared to the neat F3 fibers at macroscopic and microscopic levels on day 14 post-wounding. The important finding was a significant decrease in malondialdehyde (0.39 nmol/ mg protein) level and an increase in superoxide dismutase (5.29 unit/mg protein) activity in Dex-loaded F3 fiber-treated wound tissues. 

Conclusion

Dex-loaded core/shell fibers provided nano-scale scaffolds with sustained release profile that significantly lowered tissue oxidative stress. This finding pointed to the importance of lowering oxidative stress to achieve proper wound healing.

Language:
English
Published:
Iranian Journal of Basic Medical Sciences, Volume:27 Issue: 1, Jan 2024
Pages:
97 to 106
magiran.com/p2648585  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!