فهرست مطالب

Basic Medical Sciences - Volume:27 Issue: 1, Jan 2024

Iranian Journal of Basic Medical Sciences
Volume:27 Issue: 1, Jan 2024

  • تاریخ انتشار: 1402/10/11
  • تعداد عناوین: 16
|
  • Leila Arabi, Ali Roohbakhsh, Bizhan Malaekeh-Nikouei, bibi sedigheh fazly bazzaz Pages 1-2
  • Aram Minas, Mariana Camargo, Marco Alves, Ricardo Bertolla * Pages 3-11

    The impact of diabetes on various organs failure including testis has been highlighted during the last decades. If on one hand diabetes-induced hyperglycemia has a key role in induced damages; on the other hand, glucose deprivation plays a key role in inducing male infertility. Indeed, glucose metabolism during spermatogenesis has been highlighted due to post-meiotic germ cells drastic dependence on glucose-derived metabolites, especially lactate. In fact, hyperglycemia-induced spermatogenesis arrest has been demonstrated in various studies. Moreover, various sperm maturation processes related to sperm function such as motility are directly depending on glucose metabolism in Sertoli cells. It has been demonstrated that diabetes-induced hyperglycemia adversely impacts sperm morphology, motility and DNA integrity, leading to infertility. However, fertility quality is another important factor to be considered. Diabetes-induced hyperglycemia is not only impacting sperm functions, but also affecting sperm epigenome.  DNA packing process and epigenetics modifications occur during spermatogenesis process, determining next generation genetic quality transmitted through sperm. Critical damages may occur due to under- or downregulation of key proteins during spermatogenesis. Consequently, unpacked DNA is more exposed to oxidative stress, leading to intensive DNA damages. Moreover, epigenetic dysregulation occurred during spermatogenesis may impact embryo quality and be transmitted to next generations, increasing offspring genetic issues. Herein we discuss the mechanisms by which diabetes-induced hyperglycemia can affect epigenetic modifications and DNA packaging and methylation during spermatogenesis thus promoting long-lasting effects to the next generation.

    Keywords: Diabetes mellitus type 1, DNA, Epigenomics, DNA damage, Spermatogenesis
  • Abril Barrientos-Bonilla, Paola Pensado-Guevara, Rasajna Nadella, Aurora Sánchez-García, Laura Mireya Zavala Flores, Daniel Hernandez-Baltazar * Pages 12-15

    Living Donor Liver Transplantation (LDLT) is a promising approach to treating end-stage liver diseases, however, some post-operatory complications such as pneumonia, bacteremia, urinary tract infections, and hepatic dysfunction have been reported. In murine models using partial hepatectomy (PHx), a model that emulates LDLT, it has been determined that the synthesis of hepatic cell proliferation factors that are associated with noradrenaline synthesis are produced in locus coeruleus (LC). In addition, studies have shown that PHx decreases GABA and 5-HT2A receptors, promotes loss of dendritic spines, and favors microgliosis in rat hippocampus. The GABA and serotonin-altered circuits suggest that catecholaminergic neurons such as dopamine and noradrenaline neurons, which are highly susceptible to cellular stress, can also be damaged. To understand post-transplant affections and to perform well-controlled studies it is necessary to know the potential causes that explain as a liver surgical procedure can produce brain damage. In this paper, we review several cellular processes that could induce gliosis in LC after rat PHx.

    Keywords: Animal model, Brain, Cell damage, Immflamation, Liver, stress, Surgery, Transplantation
  • Cheng Lu, Zhen-Wei Zhou, Yu Jiang, Jianzhong Li, Jia-Bei He, Chuan Zhang, Alex F Chen, Xia Tao, Cheng Peng, He-Hui Xie * Pages 16-23
    Objective (s)

    Inadequate cytotrophoblast migration and invasion are speculated to result in preeclampsia, which is a pro-inflammatory condition. Sodium dichloroacetate (DCA) exerts anti-inflammatory actions. Thus,we sought to investigate the effect of DCA on the migration function of the lipopolysaccharide (LPS)-stimulated human-trophoblast-derived cell line (HTR-8/SVneo).

    Materials and Methods

    HTR-8/SVneo cells were treated with LPS to suppress cell migration. Cell migration was examined by both scratch wound healing assay and transwell migration assay. Western blotting was used to analyze the expression levels of toll-like receptor-4 (TLR4), nuclear factor-κB (NF-κB), TNF-α, IL-1β, and IL-6 in the cells.

    Results

    DCA reversed LPS-induced inhibition of migration in HTR-8/SVneo cells. Furthermore, DCA significantly suppressed LPS-induced activation of TLR4, phosphorylation of NF-κB (p65), translocation of p65 into the nucleus, and the production of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). Treatment with inhibitors of TLR4 signal transduction (CLI095 or MD2-TLR-4-IN-1) reduced LPS-induced overexpression of pro-inflammatory cytokines, and a synergistic effect was found between TLR4 inhibitors and DCA in HTR-8/SVneo cells. 

    Conclusion

    DCA improved trophoblast cell migration function by suppressing LPS-induced inflammation, at least in part, via the TLR4/NF-κB signaling pathway. This result indicates that DCA might be a potential therapeutic candidate for human pregnancy-related complications associated with trophoblast disorder.

    Keywords: HTR-8, SVneo cells, Inflammation, Migration, Sodium dichloroacetate, Toll-like receptor-4
  • Arshid Yousefi Avarvand, Zahra Meshkat, Farzad Khademi, Ehsan Aryan, Mojtaba Sankian, Mohsen Tafaghodi * Pages 24-30
    Objective (s)

    Tuberculosis (TB), a contagious disease caused by Mycobacterium tuberculosis  (M. tuberculosis), remains a health problem worldwide and this infection has the highest mortality rate among bacterial infections. Current studies suggest that intranasal administration of new TB vaccines could enhance the immunogenicity of M. tuberculosis antigens. Hence, we aim to evaluate the protective efficacy and immunogenicity of HspX/EsxS fusion protein of M. tuberculosis along with ISCOMATRIX and PLUSCOM nano-adjuvants and MPLA through intranasal administration in a mice model.

    Materials and Methods

    In the present study, the recombinant fusion protein was expressed in Escherichia coli and purified and used to prepare different nanoparticle formulations in combination with ISCOMATRIX and PLUSCOM nano-adjuvants and MPLA. Mice were intranasally vaccinated with each formulation three times at an interval of 2 weeks. Three weeks after the final vaccination, IFN-γ, IL-4. IL-17, and TGF-β concentrations in the supernatant of cultured splenocytes of vaccinated mice as well as serum titers of IgG1 and IgG2a and sIgA titers in nasal lavage were determined.

    Results

    According to obtained results, intranasally vaccinated mice with formulations containing ISCOMATRIX and PLUSCOM nano-adjuvants and MPLA could effectively induce IFN-γ and sIgA responses. Moreover, both HspX/EsxS/ISCOMATRIX/MPLA and HspX/EsxS/PLUSCOM/MPLA and their BCG booster formulation could strongly stimulate the immune system and enhance the immunogenicity of M. tuberculosis antigens.

    Conclusion

    The results demonstrate the potential of HspX/EsxS-fused protein in combination with ISCOMATRIX, PLUSCOM, and MPLA after nasal administration in enhancing the immune response against M. tuberculosis antigens. Both nanoparticles were good adjuvants in order to promote the immunogenicity of TB-fused antigens. So, nasal immunization with these formulations, could induce immune responses and be considered a new TB vaccine or a BCG booster.

    Keywords: HspX, EsxS, ISCOMATRIX, MPLA, Mycobacterium tuberculosis, Nasal administration, PLUSCOM
  • Haiqi Gao, Yifan Zhou, Chundong Yu, Guifa Wang, Wenwei Song, Zixu Zhang, Lu Lu, Meilan Xue *, Hui Liang Pages 31-38
    Objective (s)

    The present study investigated the effect and its underlying mechanisms of fucoidan on Type 1 diabetes mellitus (T1DM) in non-obese diabetic (NOD) mice. 

    Materials and Methods

    Twenty 7-week-old NOD mice were used in this study, and randomly divided into two groups (10 mice in each group): the control group and the fucoidan treatment group (600 mg/kg. body weight). The weight gain, glucose tolerance, and fasting blood glucose level in NOD mice were detected to assess the development of diabetes. The intervention lasted for 5 weeks. The proportions of Th1/Th2 cells from spleen tissues were tested to determine the anti-inflammatory effect of fucoidan. Western blot was performed to investigate the expression levels of apoptotic markers and autophagic markers. Apoptotic cell staining was visualized through TdT-mediated dUTP nick-end labeling (TUNEL).

    Results

    The results suggested that fucoidan ameliorated T1DM, as evidenced by increased body weight and improved glycemic control of NOD mice. Fucoidan down-regulated the Th1/Th2 cells ratio and decreased Th1 type pro-inflammatory cytokines’ level. Fucoidan enhanced the mitochondrial autophagy level of pancreatic cells and increased the expressions of Beclin-1 and LC3B II/LC3B I. The expression of p-AMPK was up-regulated and p-mTOR1 was inhibited, which promoted the nucleation of transcription factor EB (TFEB), leading to autophagy. Moreover, fucoidan induced apoptosis of pancreatic tissue cells. The levels of cleaved caspase-9, cleaved caspase-3, and Bax were up-regulated after fucoidan treatment. 

    Conclusion

    Fucoidan could maintain pancreatic homeostasis and restore immune disorder through enhancing autophagy via the AMPK/mTOR1/TFEB pathway in pancreatic cells.

    Keywords: Apoptosis, Autophagy, Fucoidan, NOD mice, Type 1 diabetes
  • Abolfazl Akbari *, Gholamalii Jelodar, Saeid Hosseinzadeh Pages 39-48
    Objective (s)

    High levels of resistin are associated with metabolic diseases and their complications, including hypertension. The paraventricular nucleus (PVN) is also involved in metabolic disorders and cardiovascular diseases, such as hypertension. Therefore, this study aimed to study cardiovascular (CV) responses evoked by the injection of resistin into the lateral ventricle (LV) and PVN and determine the mechanism of these responses in the rostral ventrolateral medulla (RVLM).

    Materials and Methods

    Arterial pressure (AP) and heart rate (HR) were evaluated in urethane-anesthetized male rats (1.4 g/kg intraperitoneally) before and after all injections. This study was carried out in two stages. Resistin was injected into LV at the first stage, and AP and HR were evaluated. After that, the paraventricular, supraoptic, and dorsomedial nuclei of the hypothalamus were chosen to evaluate the gene expression of c-Fos. Afterward, resistin was injected into PVN, and cardiovascular responses were monitored. Then to detect possible neural mechanisms of resistin action, agonists or antagonists of glutamatergic, GABAergic, cholinergic, and aminergic transmissions were injected into RVLM. 

    Results

    Resistin injection into LV or PVN could increase AP and HR compared to the control group and before injection. Resistin injection into LV also increases the activity of RVLM, paraventricular, supraoptic, and dorsomedial areas. Moreover, the CV reflex created by the administration of resistin in PVN is probably mediated by glutamatergic transmission within RVLM. 

    Conclusion

    It can be concluded that hypothalamic nuclei, including paraventricular, are important central areas for resistin actions, and glutamatergic transmission in RVLM may be one of the therapeutic targets for high AP in obese people or with metabolic syndrome.

    Keywords: Arterial Pressure, Glutamatergic transmission, Heart rate, Paraventricular hypothalamic nucleus, Resistin
  • Yating Gong, Beibei Qiu, Haotian Zheng, Xiangbo Li, Yifan Wang, Mengran Wu, Meixing Yan, Yanling Gong * Pages 49-56
    Objective (s)

    Liver injury and hyperlipidemia are major issues that have drawn more and more attention in recent years. The present study aimed to investigate the effects of unacylated ghrelin (UAG) on acute liver injury and hyperlipidemia in mice.

    Materials and Methods

    UAG was injected intraperitoneally once a day for three days. Three hours after the last administration, acute liver injury was induced by intraperitoneal injection of carbon tetrachloride (CCl4), and acute hyperlipidemia was induced by intraperitoneal injection of poloxamer 407, respectively. Twenty-four hours later, samples were collected for serum biochemistry analysis, histopathological examination, and Western blotting.

    Results

    In acute liver injury mice, UAG significantly decreased liver index, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), reduced malondialdehyde (MDA) concentration and increased superoxide dismutase(SOD) in liver tissue. NF-kappa B (NF-κB) protein expression in the liver was down-regulated. In acute hyperlipidemia mice, UAG significantly decreased serum total cholesterol (TC), triglyceride (TG), ALT, and AST, as well as hepatic TG levels. Meanwhile, hepatic MDA decreased and SOD increased significantly. Moreover, UAG improved the pathological damage in the liver induced by CCl4 and poloxamer 407, respectively.

    Conclusion

    Intraperitoneal injection of UAG exhibited hepatoprotective and lipid-lowering effects on acute liver injury and hyperlipidemia, which is attributed to its anti-inflammatory and anti-oxidant activities.

    Keywords: Anti-inflammatory, Anti-oxidative, Hyperlipidemia, Intraperitoneal injection, Liver injury, Unacylated ghrelin
  • Roghayeh Rashidi, Ala Montazeri, Mohammad Soukhtanloo, Shirin Ghasemian, MohammadSadegh Amiri, Maede Hasanpour, Elham Einafshar, Ahmad Ghorbani * Pages 57-65
    Objective (s)

    Experimental studies reported that some plants in the genus of Moraea (Iridaceae family) show anticancer potential. This study aimed to evaluate the effects of Moraea sisyrinchium on U87 glioblastoma multiforme and HepG2 liver cancer cells.

    Materials and Methods

    The cells were incubated for 24 hr with hydroalcoholic extract of the stem, flower, and bulb of M. sisyrinchium. Then, the cell proliferation (MTT) assay, cell cycle analysis (propidium iodide staining), cell migration test (scratch), Western blotting (Bax and Bcl-2 expression), and gelatin zymography (for matrix metalloproteinases, MMPs) were performed. Oxidative stress was evaluated by determining the levels of reactive oxygen species and lipid peroxidation. Angiogenesis was evaluated on chick embryo chorioallantoic membrane.

    Results

    The extracts of the flower, stem, and bulb significantly decreased the proliferation of HepG2 and U87 cells. This effect was more for U87 than HepG2 and for the bulb and stem than the flower. In U87 cells, the bulb extract increased oxidative stress, cell cycle arrest, and the Bax/Bcl-2 ratio. Also, this extract suppressed the migration ability of HepG2 and U87 cells, which was associated with the inhibition of MMP2 activity. In addition, it significantly reduced the number and diameter of vessels in the chorioallantoic membrane. Liquid chromatography-mass spectrometry revealed the presence of xanthones (bellidifolin and mangiferin), flavonoids (quercetin and luteolin), isoflavones (iridin and tectorigenin), and phytosterols (e.g., stigmasterol) in the bulb.

    Conclusion

    M. sisyrinchium bulb decreased the proliferation and survival of cancer cells by inducing oxidative stress. It also reduced the migration ability of the cells and inhibited angiogenesis.

    Keywords: Glioblastoma, Hepatocellular carcinoma, HepG2, Iridaceae, U87
  • Feng-Chen Kao, Chia-Ming Yen, Ming-Chia Lin, Hsien-Yin Liao, Hsin-Cheng Hsu, Yi-Wen Lin * Pages 66-73
    Objective (s)

    Chronic pain is considered as pain lasting for more than three months and has emerged as a global health problem affecting individuals and society. Chronic extensive pain is the main syndrome upsetting individuals with fibromyalgia (FM), accompanied by anxiety, obesity, sleep disturbances, and depression, Transient receptor potential vanilloid 1 (TRPV1) has been reported to transduce inflammatory and pain signals to the brain.

    Materials and Methods

    Acupoint catgut embedding (ACE) is a novel acupuncture technique that provides continuous effects and convenience. ACE was performed at the bilateral ST36 acupoint. 

    Results

    We demonstrated similar pain levels among all groups at baseline. After cold stress, chronic mechanical or thermal nociception was induced (D14: mechanical: 1.85 ± 0.13 g; thermal: 4.85 ± 0.26 s) and reversed in ACE-treated mice (D14: mechanical: 3.99 ± 0.16 g; thermal: 7.42 ± 0.45 s) as well as Trpv1-/- group (Day 14, mechanical: 4.25 ± 0.2 g; thermal: 7.91 ± 0.21 s) mice. Inflammatory mediators were augmented in FM individuals and were abridged after ACE management and TRPV1 gene loss. TRPV1 and its linked mediators were increased in the thalamus (THA), somatosensory cortex (SSC), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC) in FM mice. The up-regulation of these mediators was diminished in ACE and Trpv1-/- groups. 

    Conclusion

    We suggest that chronic pain can be modulated by ACE or Trpv1-/-. ACE-induced analgesia via TRPV1 signaling pathways may be beneficial targets for FM treatment.

    Keywords: Acupoint catgut embedding, Chronic pain, Fibromyalgia, Somatosensory cortex, Thalamus TRPV1
  • Seyed Zanyar Athari, Fariba Mirzaie Bavil, Rana Keyhanmanesh, Hajie Lotfi, Yousef Sajed, Aref Delkhosh, Fariba Ghiasi * Pages 74-80
    Objective (s)

    This study aimed to evaluate the effects of voluntary exercise as an anti-inflammatory intervention on the pulmonary levels of inflammatory cytokines in type 2 diabetic male rats.

    Materials and Methods

    Twenty-eight male Wistar rats were divided into four groups (n=7), including control (Col), diabetic (Dia), voluntary exercise (Exe), and diabetic with voluntary exercise (Dia+Exe). Diabetes was induced by a high-fat diet (4 weeks) and intraperitoneal injection of streptozotocin (35 mg/kg), and animals did training on the running wheel for 10 weeks as voluntary exercise. Finally, the rats were euthanized and the lung tissues were sampled for the evaluation of the levels of pulmonary interleukin (IL)-10, IL-11, and TNF-α using ELISA, and the protein levels of Nrf-2 and NF-κB using western blotting and tissue histopathological analysis. 

    Results

    Diabetes reduced the IL-10, IL-11, and Nrf2 levels (P<0.001 to P<0.01) and increased the levels of TNF-α and NF-κB compared to the Col group (P<0.001). Lung tissue levels of IL-10, IL-11, and Nrf2 in the Dia+Exe group enhanced compared to the Dia group (P<0.001 to P<0.05), however; the TNF-α and NF-κB levels decreased (P<0.001). The level of pulmonary Nrf2 in the Dia+Exe group was lower than that of the Exe group while the NF-κB level increased (P<0.001). Moreover, diabetes caused histopathological changes in lung tissue which improved with exercise in the Dia+Exe group. 

    Conclusion

    These findings showed that voluntary exercise could improve diabetes-induced pulmonary complications by ameliorating inflammatory conditions.

    Keywords: Diabetes Mellitus, Inflammation, Lung, NF-κB, Nrf2, Voluntary exercise
  • Yasser Khadrawy *, Eman Hosny, Haitham Mohammed Pages 81-89
    Objective (s)

    The current study aims to investigate the protective effect of iron oxide nanoparticles capped with curcumin (FeONPs-Cur) against motor impairment and neurochemical changes in a rat model of Parkinson’s disease (PD) induced by reserpine.

    Materials and Methods

    Rats were grouped into control, PD model induced by reserpine, and PD model treated with FeONPs-Cur (8 rats/group). The open field test was used to assess motor activity. The concentration of dopamine (DA), norepinephrine (NE), serotonin (5-HT), lipid peroxidation (MDA), reduced glutathione (GSH), and nitric oxide (NO), and the activities of Na+,K+,ATPase, acetylcholinesterase (AchE), and monoamine oxidase (MAO) were determined in the midbrain and striatum. Data were analyzed by ANOVA at P-value<0.05. 

    Results

    The PD model exhibited a decrease in motor activity. In the midbrain and striatum of the PD model, DA, NE, and 5-HT levels decreased significantly (P-value<0.05). However, an increase in MAO, NO, and MDA was observed. GSH, AchE and Na+,K+,ATPase decreased significantly in the two brain areas. FeONPs-Cur prevented the decline of dopamine and norepinephrine and reduced oxidative stress in both areas.  It also prevented the increased MAO activity in the two areas and the inhibited activity of AchE and Na+,K+,ATPase in the midbrain. These changes were associated with improvements in motor activity.

    Conclusion

    The present data indicate that FeONPs-Cur could prevent the motor deficits induced in the PD rat model by restoring dopamine and norepinephrine in the midbrain and striatum. The antioxidant activity of FeONPs-Cur contributed to its protective effect. These effects nominate FeONPs-Cur as an antiparkinsonian candidate.

    Keywords: FeONPs-Cur, Monoamines, Motor Activity, Oxidative stress, Parkinson’s disease
  • Farhad Eisvand, Kasra Rezvani, Hossein Hosseinzadeh, Bibi Marjan Razavi * Pages 90-96
    Objective (s)

    Diabetes is a chronic disorder that occurs as a result of impaired glucose metabolism. In hyperglycaemic states, the balance between oxidative stress and antioxidant enzymes is disrupted leading to oxidative damage and cell death. In addition,  impaired autophagy leads to the storage of dysfunctional proteins and cellular organelles in the cell. Hence, the cytoprotective function of autophagy may be disrupted by high glucose conditions. Alpha-mangostin (A-MG) is an essential xanthone purified from the mangosteen fruit. The different pharmacological benefits of alpha-mangostin, including antioxidant, anti-obesity, and antidiabetic, were demonstrated. 

    Materials and Methods

    We evaluated the protective influence of A-MG on autophagic response impaired by high concentrations of glucose in human umbilical vein endothelial cells (HUVECs). The HUVECs were treated with various glucose concentrations (5-60 mM) and A-MG (1.25-10 μM) for three days. Then, HUVECs were treated with 60 mM of glucose+2.5 μM of A-MG to measure viability, ROS, and NO content. Finally, the levels of autophagic proteins including LC3, SIRT1, and beclin 1 were evaluated by western blot.

    Results

    The results expressed that high glucose condition (60 mM) decreased viability and increased ROS and NO content in HUVECs. In addition, LC3, SIRT1, and beclin 1 protein levels declined when HUVECs were exposed to the high concentration of glucose. A-MG reversed these detrimental effects and elevated autophagic protein levels.

    Conclusion

    Our data represent that A-MG protects HUVECs against high glucose conditions by decreasing ROS and NO generation as well as increasing the expression of autophagy proteins.

    Keywords: Alpha-mangostin, Autophagy, Beclin 1, Diabetes, Garcinia mangostana, HUVEC, LC3, SIRT1
  • Seyede Sahar Hashemi, Mahmoud Najari, Milad Parvin, Mohammad Mehdi Kalani, Majid Assadi, Ramin Seyedian, Sasan Zaeri * Pages 97-106
    Objective (s)

    Knowing the detrimental role of oxidative stress in wound healing and the anti-oxidant properties of Dexpanthenol (Dex), we aimed to produce Dex-loaded electrospun core/shell nanofibers for wound healing study. The novelty was measuring oxidative stress in wounds to know how oxidative stress was affected by Dex-loaded fibers.

    Materials and Methods

    TPVA solution containing Dex 6% (w/v) (core) and PVA/chitosan solution (shell) were coaxially electrospun with variable injection rates of the shell solution. Fibers were then tested for physicochemical properties, drug release profile, and effects on wound healing. Levels of tissue lipid peroxidation and superoxide dismutase activity were measured.

    Results

    Fibers produced at shell injection rate of 0.3 ml/hr (F3 fibers) showed core/shell structure with an average diameter of 252 nm, high hydrophilicity (swelling: 157% at equilibrium), and low weight loss (13.6%). Dex release from F3 fibers seemed to be ruled by the Fickian mechanism based on the Korsmeyer-Peppas model (R2 = 0.94, n = 0.37). Dex-loaded F3 fibers promoted fibroblast viability (128.4%) significantly on day 5 and also accelerated wound healing compared to the neat F3 fibers at macroscopic and microscopic levels on day 14 post-wounding. The important finding was a significant decrease in malondialdehyde (0.39 nmol/ mg protein) level and an increase in superoxide dismutase (5.29 unit/mg protein) activity in Dex-loaded F3 fiber-treated wound tissues. 

    Conclusion

    Dex-loaded core/shell fibers provided nano-scale scaffolds with sustained release profile that significantly lowered tissue oxidative stress. This finding pointed to the importance of lowering oxidative stress to achieve proper wound healing.

    Keywords: Core, shell nanofiber, Dexpanthenol, Fibroblast, Mouse, Oxidative stress, Wound healing
  • Menghua Sun, Feiya Yin, Xinrong Wu, Shaoer Sun, Yongqiang An, Manlin Zhu, Xiaomin Li, Wei Liu * Pages 107-113
    Objective (s)

    To investigate the effects and mechanisms of ivabradine (IVA) on isoprenaline-induced cardiac injury.

    Materials and Methods

    Forty male C57BL/6 mice were randomly divided into control group, model group, high-dose IVA group, and low-dose IVA group. The control group was given saline, other groups were given subcutaneous injections of isoproterenol (ISO) 5 mg/kg/d to make the myocardial remodeling model. A corresponding dose of IVA (high dose 50 mg/kg/d, low dose 10 mg/kg/d) was given by gavage (30 days). A transthoracic echocardiogram was obtained to detect the structure and function of the heart. An electron microscope was used to explore the cardiomyocytes’ apoptosis and autophagy. HE staining and Masson’s trichrome staining were performed to explore myocardial hypertrophy and fibrosis. Western blot was used to detect Bax, Bcl-2, cleaved caspase-3, Becline-1, LC3, phosphorylated p38 mitogen-activated protein kinase (p-p38MAPK), phosphorylated extracellular regulated protein kinases1/2 (p-ERK1/2), phosphorylated c-Jun N-terminal kinase (p-JNK), and α-smooth muscle actin (α-SMA) in the myocardium.

    Results

    Heart rate in the IVA groups was reduced, and the trend of heart rate reduction was more obvious in the high-dose group. Echocardiography showed that IVA improved the cardiac structure and function compared to the model group. IVA attenuated cardiac fibrosis, decreased cardiomyocyte apoptosis, and increased autophagy. The phosphorylated MAPK in the ISO-induced groups was increased. IVA treatment decreased the p-p38MAPK level. There were no differences in p-ERK and p-JNK levels.

    Conclusion

    The beneficial effects of IVA on myocardial injury are related to blocking the p38MAPK signal pathway, decreasing cardiomyocyte apoptosis, and increasing cardiomyocyte autophagy.

    Keywords: Apoptosis, Autophagy, Cardiac remodeling, Fibrosis, heart failure
  • Arshad Ghaffari-Nasab, Gonja Javani, Fereshteh Farajdokht, MohammadReza Alipour, Gisou Mohaddes * Pages 114-121
    Objective (s)

    Aging and stress synergistically induce behavioral dysfunctions associated with oxidative and endoplasmic reticulum (ER) stress in brain regions. Considering the rejuvenating effects of young plasma on aging brain function, in the current study, we examined the effects of young plasma administration on anxiety-like behavior, NADH oxidase, NADPH oxidase, and ER stress markers in the hippocampus of old male rats.

    Materials and Methods

    Young (3 months old) and aged (22 months old) rats were randomly assigned into five groups: young control (Y), aged control (A), aged rats subjected to chronic stress for four weeks (A+S), aged rats subjected to chronic stress and treated with old plasma (A+S+OP), and aged rats subjected to chronic stress and treated with young plasma (A+S+YP). Systemic injection of (1 ml) young and old plasma was performed for four weeks (3 times/week). 

    Results

    Young plasma transfusion significantly improved anxiety-like behavior in aged rats and modulated oxidative stress in the hippocampus, evidenced by the increased NADH oxidase (NOX) activity and the reduced NADPH oxidase. In addition, the levels of C/EBP homologous protein (CHOP) and Glucose-Regulated Protein 78 (GRP-78), as ER stress markers, markedly reduced in the hippocampus following the administration of young plasma. 

    Conclusion

    These findings suggest that young plasma transfusion could reverse anxiety-like behavior in stress-exposed aged rats by modulating the hippocampal oxidative and ER stress markers.

    Keywords: Aging, ER stress, NADH oxidase, NADPH oxidase, stress, Young plasma