Examining the Efficiency Models, Genetic Algorithm under MSV Risk and Particle Swarm Optimization Algorithm under CVAR Risk Criterion in Selection Optimal Portfolio Shares Listed Firms on Stock Exchange

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Choosing the optimal stock portfolio is one of the main goals of capital management. Today, There are several tools and techniques for measuring portfolio risk and selecting the optimal stock portfolio. In this article, using data of 15 shares selected by purposeful sampling method from the top companies of Tehran Stock Exchange Organization including; PKOD, ZMYD, BPAS, FOLD, MKBT, GOLG, MSMI, PTAP, SSEP, AZAB, FKAS, NBEH, PFAN, GMRO and GSBE, the First return of these stocks are calculated daily in the period of 31/3/1394 -31/3/1399 for 5 years for 1183 days and then using MATLAB software models The Metaheuristic Optimization of the Genetic Algorithm under the MSV Risk Criterion and the Particle Swarm Algorithm under the CVaR risk Criterion are Compared. The results show that the genetic algorithm model under MSV risk criterion is more efficient and less risky, therefore the genetic algorithm model under MSV risk criterion is more efficient than the particle swarm algorithm model under CVaR risk criterion.

Language:
Persian
Published:
Journal of Financial Economics, Volume:17 Issue: 65, 2023
Pages:
307 to 322
https://www.magiran.com/p2651140  
سامانه نویسندگان
  • Adinehvand، Dariuosh
    Author (1)
    Adinehvand, Dariuosh
    .Ph.D Financial Engineering, Karaj Branch, Islamic Azad University, کرج, Iran
  • Razini، Ebrahim Ali
    Corresponding Author (2)
    Razini, Ebrahim Ali
    Assistant Professor Department of Management and Accounting, Karaj Branch, Islamic Azad University, کرج, Iran
  • Hashemizadeh، Elham
    Author (5)
    Hashemizadeh, Elham
    (1390) دکتری ریاضی کاربردی، دانشگاه آزاد اسلامی واحد کرج
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)