Magmatic Evolution of the Upper Eocene Monzonitic stock in the Kuh-e-Kalut-e-Ghandehari (Northwest of Anarak, Isfahan province)

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

In central part of the Mesozoic Ashin ophiolite (Northwest of Anarak, Isfahan province, Iran), the Upper Eocene monzonitic stock cross cuts the Ashin ophiolite and Middle Eocene volcanic rocks. Amphibolite xenoliths are enclosed in the stock and associated Eocene volcanic rocks. Xenoliths are more abundant in the margin of the monzonitic stock. Rock-forming minerals of the stock are plagioclase with andesine to labradorite composition (An=34-60%), Alkali-feldspar with orthoclase composition (Or= 70.8 to 96.1%), diopsidic clinopyroxene with (Mg# =0.71-0.90), and phlogopite mica with (Fe#=0.3). Opaque minerals are magnetite and titanomagnetite (TiO2=1.6-4.4 wt.%). Main textures of samples from this intrusive body are granular, intergranular and poikilitic. Samples from the margin of this stock represent porphyritic texture. 
Geochemistry of minerals and whole rock samples of this stock indicate that they belong to the calc-alkaline magmatic series and are similar to the samples from the continental magmatic arcs.
These magmatic rocks possibly were formed by subduction of the CEIM (Central-East Iranian Microcontinent) confining oceanic crusts (Ashin and Nain oceanic crusts) during Mesozoic and Early Cenozoic eras.

Introduction

Iran is a part of the Alpine-Himalayan orogenic system, including the Paleozoic to Cenozoic ophiolites, magmatic and metamorphic rocks (Takin, 1972; Berberian and King, 1981; Berberian et al., 1982; Dercourt et al., 1986; Alavi, 1994; Mohajjel et al., 2003; Shahabpour, 2007). The main pulse of the Paleogene and Neogene magmatic (volcanic and intrusive) activities of Iran can be attributed to the two Cenozoic subduction events, including the western Neo-Tethyan oceanic crust subduction beneath the Sanandaj-Sirjan block in the west and the eastern Neo-Tethyan oceanic crust subduction beneath the Central Iran (e.g., Shirdashtzadeh et al., 2022). The former subduction possibly caused to the formation of the Urumieh-Dokhtar Magmatic Arc, but the later subdution results is not well studied yet. 
In the this research, the target region is located in the west of the Yazd block (Central Iran), where the Eocene volcanic and plutonic rocks represent subduction-related characteristics (Jamshidzaei et al., 2021). The investigated subduction-related monzonitic stock that cross cuts the central part of the Ashin ophiolite in the Kuh-e-Kalut-e-Ghandehari region, in the northwest of Anarak (Isfahan Province, Iran). The main lithologies in the Kuh-e-Kalut-e-Ghandehari are Mesozoic lithologies of Ashin Ophiolite, Paleocene limestone, Eocene volcanic rocks, monzonitic stock, Lower Red Formation, and Akhoreh Formation. Ashin ophiolite was formed in the mesozoic (Shirdashtzadeh et al., 2022) and emplaced in the Late Paleocene (~60 Ma; Pirnia et al., 2020; Shirdashtzadeh et al., 2022), before than Eocene volcanism and plutonism. The studied monzonitic stock of the Kuh-e-Kalut-e-Ghandehari intrudes the Mesozoic Ashin ophiolite and Middle Eocene volcanic rocks.
The calc-alkaline affinity of the volcanic and plutonic rocks of the area, tectonic activity of the Great Kavir fault caused to the crushing and mylonitization of the surrounding rock units, as well as the alteration evidences in the field studies point to suitable conditions for the ore deposit exploration in the area (e.g., copper). In this research, the petrology, mineralogy, and whole rock geochemistry of the Upper Eocene monzonitic stock are considered. This research will expand our understanding of the geochemical nature of subduction-related Cenozoic magmatism in Central Iran.

Materials and methods

After detailed field studies and sampling, the selected fresh samples were used for microscopic thin section and polished-thin section studies by the polarizing binocular microscope (Olympus BH-2). The microprobe analyses were performed at the School of Natural Systems, College of Science and Engineering, Kanazawa University (Kanazawa, Japan) using a wavelength dispersive electron probe microanalyzer (EPMA) (JEOL JXA-8800R). The mineral analysis was achieved under an accelerating voltage of 20 kV, a probe current of 20 nA, and a focused beam diameter of 3μm. 14 whole rock samples analyses were performed by Brucker S4 PIONEER XRF in the central laboratory of the University of Isfahan and 3 samples were analyzed in the Isfahan Nuclear Technology Center by neutron activation analysis (NAA).

Results

Based on the field relation ships, this gray to light gray pluton intrudes into the Middle Eocene volcanic rocks and belongs to the Upper Eocene. The Middle Eocene volcanic rocks and Upper Eocene monzonitic stock crosscut the Ashin Ophiolite. This Eocene stock and volcanic rocks contain amphibolite xenoliths with the same mineralogy and petrography. Xenoliths are more abundant in the margin of the monzonitic stock. Gradual decreasing of modal plagioclase content indicates that the xenoliths range from amphibolite (plagioclase + amphibole) to hornblendite (only amphibole) in composition.
Rock-forming minerals of the stock are plagioclase with andesine to labradorite composition (An = 34-60 %), alkali-feldspar with orthoclase composition (Or = 70.8 to 96.1%), diopside clinopyroxene with Mg# = 0.71-0.90, and phlogopite mica with Fe# = 0.3. Opaque minerals are magnetite and titanomagnetite with TiO2 = 1.6-4.4 wt%. The main textures of samples from this intrusive body are granular, intergranular and poikilitic. Samples from the margin of this stock represent porphyritic texture. The SiO2 value in the whole rock compositions ranges from 47.9 to 61.65 wt.% (basic to intermediate). The average content of alkalis is 9.75 wt.%). The Kuh-e-Kalut-e-Ghandehari rocks show sodic affinity by higher Na2O than K2O, based on the Na2O/K2O versus SiO2 and K2O/Na2O versus SiO2 diagrams (Jaques et al., 1985). The Eocene intrusive and volcanic rocks of this area are similar in terms of mineralogy and texture. Petrography and whole rocks chemical analyses indicate that the studied stock is geochemically composed of gabbro, monzodiorite to monzonite in composition with metaluminous affinity. Monzonite is the predominant rock.

Tectonic setting

Various tectonomagmatic discrimination diagrams are used to determine the tectonomagmatic setting of the Kuh-e-Kalut-e-Ghandehari stock. Mineral chemistry and whole rock geochemistry of the Kuh-e-Kalut-e-Ghandehari monzonitic stock indicate a calc-alkaline magmatic series similar to the subduction-related magmas in the normal continental magmatic arcs formed during the mantle metasomatism. According to the the temporal and geological situation, as well as the geochemical characteristics of the Kuh-e-Kalut-e-Ghandehari stock, it is considered as a part of an arc magmatism, related to the subduction of Neo-Tethyan oceanic crust beneath the CEIM (Central–East Iranian Microcontinent) during the Late Mesozoic and Early Cenozoic eras.

Acknowledgments

We are grateful to the University of Isfahan and the Department of Geology of Kanazawa University (Japan) for their supports. We are also grateful to anonymous reviewers for their useful comments and suggestions that improved the quality of this paper.

Language:
Persian
Published:
Journal of Economic Geology, Volume:15 Issue: 4, 2024
Pages:
55 to 79
magiran.com/p2701811  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!