Selection of Effective Features from Raw US RF Signals to Enhance Intelligent Breast Lesion Classification Using Machine Learning

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Breast cancer stands as the most prevalent form of cancer among women, with over 80% of early-stage breast abnormalities being benign. Timely detection is therefore crucial for prompt intervention. Ultrasound Radio Frequency (US RF) signals represent a non-invasive, and real-time screening method for breast cancer, offering advantages in tissue differentiation and cost-effectiveness without requiring additional equipment. This research aims to present an intelligent approach for the classification of benign, suspicious, and malignant breast lesions based on effective features extracted from the time series. The dataset, registered as USRFTS, comprises 170 instances recorded from 88 patients. The proposed methodology encompasses four key phases: pre-processing, feature extraction, feature selection, and classification. In the pre-processing phase, B-mode images are reconstructed from US RF time series, and a radiologist manually selects the Region of Interest (ROI) in each image. Subsequently, diverse features in the time and frequency domains are extracted from each ROI during the feature extraction stage. The ant colony method is employed for the selection of impactful features. The dataset is then subjected to evaluation using classifiers such as Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree (DT), Linear Discriminant Analysis (LDA), and a reference classification method (RCM). The results demonstrate a maximum classification accuracy of 94.95% for two classes and 93.33% for three classes

Language:
Persian
Published:
Iranian Journal of Biomedical Engineering, Volume:17 Issue: 2, 2024
Pages:
109 to 124
https://www.magiran.com/p2803380  
سامانه نویسندگان
  • Fallah، Ali
    Corresponding Author (2)
    Fallah, Ali
    Associate Professor Biomedical Engineering, Amirkabir University of Technology, تهران, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)