Effects of Temperature and Day Length on Developmental Stages of Safflower Genotypes under Field Conditions

Abstract:

A field experiment was conducted in 2000 at the Agricultural Research Station, Isfahan University of Technology, to model the response of four safflower genotypes to day length and temperature changes under field conditions. Five planting dates (March 12, April 12, May 10, June 8, and July 12) and four safflower genotypes (Arak 2811, local variety Koseh, Nebraska 10 and Varamin 295) were evaluated using a randomized complete block design with split-plot layout in three replications. Date of planting was considered as the main plot and cultivars were randomized in the sub-plots. Number of days from planting (P) to emergence (E), stem elongation (SE) to head visible (HV), and HV to flowering initiation (FI) significantly reduced with delay in planting as the result of increase in temperature during these periods. Number of days from P to SE, duration of flowering (DF) and termination of flowering (TF) to physiological maturity (PM) were significantly affected by planting date and reduced as day length increased. The same was observed in the case of number of days from P to 50% flowering (MF) and to PM. Large co-variation of day length with temperature may explain a portion of day length contribution to the variation in the above periods. Varamin 295 was later than other genotypes with respect to the duration from P to HV, and specially, for rosette duration. In addition and for unknown reasons, the rate of development (RD) of Varamin 295 at all developmental periods could not be explained by day length and/or temperature variables. Among other genotypes, Koseh with 125 days, and Nebrska 10 with 118 days from P to PM were the latest and the earliest genotypes, respectively. The response of Koseh to planting dates, as measured by the duration of various developmental stages, differed from Arak 2811 and Nebraska 10. This was attributed to the probable response of Koseh to day length. RD of Koseh, Arak 2811, and Nebraska 10 during P to MF was explained by a linear regression and RD of Koseh during P to PM by a polynomial regression with day length by mean temperature as an independent variable. RD of Arak 2811 and Nebraska 10 during P to PM was explained by minimum temperature. It seems that partial sensitivity of Koseh to day length has a considerable significance in its adaptation to environmental conditions prevailing in the summer under Isfahan climatic conditions.

Language:
Persian
Published:
Journal of Hydrology and Soil Science, Volume:7 Issue: 4, 2004
Page:
83
magiran.com/p633853  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!