فهرست مطالب

Iranian Journal of Materials science and Engineering
Volume:21 Issue: 1, Mar 2024

  • تاریخ انتشار: 1402/12/11
  • تعداد عناوین: 9
|
  • Sandesh Jirage*, Kishor Gaikwad, Prakash Chavan, Sadashiv Kamble Page 1

    The Cu2ZnSnS4 (CZTS) thin film is newly emerging semiconductor material in thin film solar cell industry. The CZTS composed of economical, common earth abundant elements. It has advantageous properties like high absorption coefficient and best band gap. Here we have applied low cost chemical bath deposition technique for synthesis of CZTS at low temperature, acidic medium and it’s characterization. The films were characterized by different techaniques like X-Ray diffraction, Raman, SEM, Optical absorbance, electrical conductivity and PEC study. The X-Ray diffraction, Raman scattering techniques utilized for structural study. The XRD revels kasterite phase and nanocrystalline nature of CZTS thin films. These results and its purity confirmed further by advanced Raman spectroscopy with 335 cm-1 major peak. The crystallite size which was found to be 50.19 nm. The optical absorbance study carried by use of UV-Visible spectroscopy analyses its band gap near about 1.5 eV and its direct type of absorption. The electrical conductivity technique gives p-type of conductivity. The scanning electron microscopy (SEM) study finds it’s rock like unique morphology. The EDS technique confirms its elemental composition and it’s fair stoichiometry. The analysis of PEC data revealed power conversion efficiency-PCE to 0.90%.The Cu2ZnSnS4 (CZTS) thin film is newly emerging semiconductor material in thin film solar cell industry. The CZTS composed of economical, common earth abundant elements. It has advantageous properties like high absorption coefficient and best band gap. Here we have applied low cost chemical bath deposition technique for synthesis of CZTS at low temperature, acidic medium and it’s characterization. The films were characterized by different techaniques like X-Ray diffraction, Raman, SEM, Optical absorbance, electrical conductivity and PEC study. The X-Ray diffraction, Raman scattering techniques utilized for structural study. The XRD revels kasterite phase and nanocrystalline nature of CZTS thin films. These results and its purity confirmed further by advanced Raman spectroscopy with 335 cm-1 major peak. The crystallite size which was found to be 50.19 nm. The optical absorbance study carried by use of UV-Visible spectroscopy analyses its band gap near about 1.5 eV and its direct type of absorption. The electrical conductivity technique gives p-type of conductivity. The scanning electron microscopy (SEM) study finds it’s rock like unique morphology. The EDS technique confirms its elemental composition and it’s fair stoichiometry. The analysis of PEC data revealed power conversion efficiency-PCE to 0.90%.

    Keywords: nanocrystalline, semiconductor, solar cells, thin films, CZTS
  • Amruta Patil*, Sonali Mahaparale Page 2

    Iron oxide nanoparticles has attracted extensively due to their supermagnetic properties, preferred in biomedicine because of their biocompatibility and potential nontoxicity to human beings. Synthesis of iron nanoparticles (FeNPs) was prepared with the help of ferric chloride and ferrous sulphate by using the coprecipitation method. The variation and combination of ferric and ferrous concentrations affect the physical and magnetic properties of iron oxide nanoparticles.  The effect of 0.1 M ferric and ferrous concentration on iron oxide nanoparticles studied separately and in combination. The obtained nanoparticles were characterized by Particle size, zeta potential, Ultraviolet (UV-visible), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscope (SEM), Thermal gravimetric analysis (TGA), and Vibrating-sample magnetometer (VSM) techniques. Particle size was below 200nm and zeta potential was within the limit for all the batches. UV visible spectra at 224 nm, and FTIR exhibit two peaks at 510 and 594 cm-1, indicating iron oxide NPs and XRD confirmed the crystalline nature of Fe. SEM showed a spherical shape for all batches. The use of a combination of ferric and ferrous is more effective than its individual use. TGA and VSM studies confirmed its magnetic properties.

    Keywords: Ferric chloride, Ferrous sulphate, Iron oxide, supermagnetic, Magnetic nanoparticles
  • Tanaji Patil*, S M Nikam, R S Kamble, Rahul Patil, Mansing Takale, Satish Gangawane Page 3

    The trimanganese tetraoxide (Mn3O4) nanostructured thin films doped with 2 mol % of nickel (Ni) and molybdenum (Mo) ions were deposited by a simple electrophoretic deposition technique. The structural, optical, and morphological studies of these doped thin films were compared with pure Mn3O4 thin films. X-ray diffraction (XRD) confirmed the tetragonal Hausmannite spinel structure. The Fourier transform infrared spectroscopy (FTIR) provided information about the molecular composition of the thin films and the presence of specific chemical bonds. The optical study and band gap energy values of all thin films were evaluated by the UV visible spectroscopy technique. The scanning electron microscopy (SEM) illustrated the morphological modifications of the Mn3O4 thin films due to doping of the nickel and molybdenum ions. The Brunauer Emmett Teller (BET) method has confirmed the mesoporous nanostructure and nanopores of the thin films. The supercapacitive performance of the thin films was studied by cyclic voltammetry (CV), and galvanostatic charge discharge (GCD) techniques using the three-electrode arrangement. An aqueous 1M Na2SO4 electrolyte was used for the electrochemical study. The 2 mol % Ni doped Mn3O4 thin film has shown maximum specific capacitance than pure and Mo doped Mn3O4 thin films. Hence, this study proved the validity of the strategy - metal ion doping of Mn3O4 thin films to develop it as a potential candidate for electrode material in the futuristic energy storage and transportation devices.

    Keywords: Electrophoretic deposition, doping by metal ions, mesoporous, pseudocapacitors
  • Samrat Mane* Page 4

    In this research work, Cadmium Sulphide thin film deposited on to glass substrate in a non-aqueous medium at 80 °C. The various physical preparative parameters and the deposition conditions, such as the deposition time and temperature, concentrations of the chemical species, pH, speed of mechanical stirring, etc., were optimized to yield good quality films. The as-prepared sample is tightly adherent to the substrate's support, less smooth, diffusely reflecting and was analyzed for composition. The synthesized film is characterized using X- ray diffraction (XRD), electrical and optical properties. It appears that the composites are rich in Cd. The grown CdS thin film had an orange-red color. A band gap of CdS thin film is 2.41 eV.  The average crystallite size of the CdS film was 21.50 nm. The resistivity of the CdS thin film is about 5.212 x 105 W cm.

    Keywords: CdS thin film, low cost, CBD techniques, electrical, optical properties
  • Richa Singh* Page 5

    Drug-resistance among bacteria is a concerning issue in medical field. Silver nanoparticles (AgNPs) are one of the promising novel nano-antibiotics. In the present study, AgNPs were synthesized using cell-free extract of Acinetobacter sp. challenged with silver nitrate. Preliminary observations done using UV-Vis spectrophotometry at 420 nm. Complete reduction of silver ions to AgNPs was confirmed through cyclic voltammetry. Electron microscopy revealed formation of spherical shaped nanoparticles of size upto 20 nm. These AgNPs were furthr used to determine their effect on activity of various antibiotics against pathogenic bacteria such as Neisseria and Xanthomonas. Higher antibacterial activity of AgNPs was observed against Gram-negative bacteria. Enhanced antibacterial action of AgNPs was observed with selected beta-lactam antibiotics producing upto 3-fold increase in area of zone of inhibition. On exposure to AgNPs, the minimum inhibitory concentration and minimum bactericidal concentration of antibiotics were lowered by upto 2000 times indicating potential synergistic action of AgNPs. This study clearly signifies that the drug, proved to be inefficient due to bacterial resistance, could be made functional again in presence of AgNPs. This will help in development of novel antibacterial formulations containing antibiotics and nanoparticles to combat multiple drug-resistance in microorganisms.

    Keywords: silver nanoparticles (AgNPs), antibacterial, synergy, biomedical application
  • Amit Bandekar*, Pravin Tirmali, Paresh Gaikar, Shriniwas Kulkarni, Nana Pradhan Page 6

    The Mn-Zn ferrite with a composition of Mn0.25Mg0.08Cu0.25Zn0.42Fe2O4 has been synthesized in this study using the chemical sol-gel technique at a pH of 7. The sample was prepared and subsequently annealed at a temperature of 700°C. The nanocrystalline ferrite samples were subjected to characterization using X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Thermogravimetry (TG), and Differential thermal analysis (DTA). The findings of these observations are delineated and deliberated. The sample's phase composition was verified using X-ray diffraction examination. The crystalline size was determined using Scherrer's formula and was observed to be within the range of 20-75 nm. Two notable stretching bands were seen in the FTIR spectra within the range of 400-650 cm-1. The spinel structure of the produced nanoparticles was confirmed by these two bands. The magnetic characteristics of the powder were examined using a Vibrating Sample Magnetometer (VSM). The presence of M-H hysteresis loops suggests that the produced nanoparticles have superparamagnetic properties, as evidenced by their low coercive force, remanent magnetization, and saturation magnetization values.

    Keywords: Ferrite, sol-gel method, nanocrystalline, superparamagnetic
  • Dipali Potdar, Sushant Patil, Yugen Kulkarni, Niketa Pawar, Shivaji Sadale, PRASHANT CHIKODE* Page 7

    The Nickel tungsten (Ni-W) alloy was electrodeposited on stainless steel (SS) substrate using potentiostatic mode at room temperature. Potentiostatic electrodeposition was carried out by varying the deposition time. The physicochemical properties of Ni-W alloys were studied using X-Ray diffraction (XRD), Electron Microscopy and micro-Raman spectroscopy. Recorded XRD spectra was compared with standard JCPDS card and the presence of Ni was confirmed, no such peaks for W were observed. Further study was extended for micro-Raman analysis. From Raman spectroscopy study the appearance of Ni-O and W6+=O bonds confirms that the Ni-W present in amorphous phase. Several cracks were observed in SEM images along with nanoparticles distributed over the electrode surface. The appearance of cracks may be correlated with the in-plane tensile stresses, lattice strains and stacking faults and may be related to the substrate confinements.

    Keywords: Ni-W, Alloy, Electrodeposition, Amorphous, Raman Spectroscopy
  • Yugen Kulkarni, Niketa Pawar, Namrata Erandole, Muskan Mulani, Mujjamil Shikalgar, Swapnil Banne, Dipali Potdar, Ravindra Mane, Smita Mahajan, Prashant Chikode* Page 8

    The paper investigates the solar photodegradation of Methylene Blue dye using copper oxide (CuO) thin films synthesized by the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The structural, morphological, and optical characteristics of the CuO thin films have been investigated by employing a variety of methods, such as Fourier transform Infrared (FTIR) spectroscopy, UV-Vis spectroscopy, Scanning electron microscopy (SEM), and X-ray diffraction (XRD). The outcomes showed that CuO thin films with excellent surface shape and a highly crystalline nature had been successfully deposited. Methylene Blue was subjected to solar radiation during its photodegradation process, and the outcomes showed a significant decrease in the dye's concentration over time. To maximize the photo degradation process, the effects of other experimental factors were also assessed, such as the starting concentration of MB, the quantity of CuO thin film, number of SILAR cycles and the pH of the solution. Good photocatalytic activity is demonstrated by CuO thin films produced using the SILAR approach in the solar photodegradation of methylene blue. The development of affordable and ecologically friendly wastewater treatment technology that can use sun energy to break down persistent organic contaminants is affected by these findings.

    Keywords: Photo-catalysis, wastewater treatment, CuO, Methylene Blue, Solar energy
  • Avinash Ramteke*, Pradnya Chougule, Pranali Chavan, Amit Yaul, Gourav Pethe Page 9

    Nickel doped CoMn ferrites with high magnetization were synthesized by double sintering solid state route with compositions of Co0.7-xNixMn0.3Fe2O4 with x = 0, 0.05, 0.1 and 0.15. Theoretical Cation distribution for cubic spinel ferrites was suggested on basis of electrical configuration expectations and cation site preferences. Cation distribution suggested was in good agreement with experimental results obtained from VSM and XRD. Values of theoretically calculated magnetic moment, coercivity and magnetization are in good agreement with experimental data obtained from VSM. Maximum saturation magnetization of 37.7emu/gm is obtained for sample Co0.7Mn0.3Fe2O4 at magnetic field of 5K Oe. Magnetostriction was found to increase with increasing magnetic field (from 1KOe to 5KOe.) Maximum magnetostriction of 84ppm was observed for sample Co0.7Mn0.3Fe2O4 at 5KOe. Maximum magnetization of magnetoelectric composites with 30% Co0.7-xNixMn0.3Fe2O4 – 70% PbZr0.48Ti0.52 was found to be 7.4 emu/g for composition with x = 0.

    Keywords: Co-Ni-Mn Ferrites, Cation Distribution, Magnetostriction, Nickel doped, M-H Hysteresis loop