به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

classification

در نشریات گروه علوم پایه
  • Ali Ghani Nori Alsaedi, Mohammad Jalali Varnamkhasti, Husam Jasim Mohammed, Mojtaba Aghajani

    ‎This study aims to enhance decision-making processes in dynamic organizational environments by integrating Artificial Intelligence (AI) techniques. It explores AI's potential to improve efficiency, accuracy, and predictability while addressing the ethical concerns, biases, and risks of over-reliance that accompany its implementation. We introduce a novel, domain-independent iterative methodology that leverages data mining classification techniques to analyze large datasets from information systems. This approach identifies specific situations where existing decision-making strategies yield suboptimal results and uses these insights to refine and improve the strategies employed. The methodology has proven effective in augmenting feedback control strategies by employing an inductive machine learning algorithm to uncover areas for enhancement. Our results indicate that initial strategies can be upgraded to achieve comparable levels of cost efficiency, even when accounting for the costs associated with evaluating potential strategies. This study recognizes limitations related to the variability of expert opinions in scenarios characterized by numerous components, which may constrain the optimization scope of the learning system. Future research should consider the application of advanced optimization techniques, such as genetic algorithms, to better establish optimal conditions for improvement. The findings suggest that this methodology can be readily applied within simulation frameworks, allowing organizations to assess changes in control strategies effectively. This facilitates informed resource allocation and improves operational efficiencies across diverse settings. As the adoption of AI in decision-making processes increases, attention to ethical considerations becomes crucial. Our methodology promotes transparency and addresses potential biases, fostering responsible AI use that mitigates negative societal impacts.

    Keywords: Data Mining, Classification, Decision Making, Technique, Improve, Processes
  • فاطمه محسن نژاد*، غلامرضا بخشی خانیکی
    وضعیت سیستماتیک جنس Fritillaria در سطح زیرجنس موضوع بحث های طولانی بوده است. این جنس از نظر ریخت شناسی پیاز، خامه، نوش جای و کپسول، مطالعه هسته و تیمارهای مولکولی به دو تا ده زیرجنس طبقه بندی شده است. در این مطالعه از میکروسکوپ الکترونیکی روبشی میله پرچم و بساک برای بازنگری سیستماتیک جنس در سطح فرعی استفاده شد. چندین ویژگی کمی و کیفی از جمله طول میله پرچم، ریخت شناسی، رنگ، تزئینات و طول، رنگ و چسبندگی بساک ها در27 گونه از جنس Fritillaria مورد بررسی قرار گرفت. برای گونه های مورد مطالعه، یک دندروگرام خوشه بندی براساس این صفات ساخته شد و یک درخت فیلوژنتیک با استفاده از ستون فقرات فیلوژنتیکی براساس نام گذاری گیاه شناسی فهرست گیاهان در نرم افزار R صورت گرفت. نتایج نشان داد که تناظری بین دندروگرام و درخت فیلوژنتیک وجود دارد که نشان دهنده سودمندی نسبی ویژگی های فراساختاری میله و بساک در سیستماتیک Fritillaria در سطح زیرجنس است. علاوه بر این، هر دو درخت نشان دادند که اعضای زیرجنس Fritillaria تک نیا نیستند و یک رابطه خواهری بین زیرجنس های Petilium و Theresia وجود دارد.
    کلید واژگان: Fritillaria، Liliaceae، فراساختار رشته- بساک، میکروسکوپ الکترونی روبشی
    Fatemeh Mohsennezhad *, Gholamreza Bakhshi Khaniki
    The systematic state of the genus Fritillaria at the subgeneric level has been the subject of long debate. The genus was classified into various subgenera ranging from two to ten in different morphological e.g., bulbs, style, nectaries, and capsule, Karyological, and molecular studies. In this study scanning electron microscopy imaging of the filament and anther was used to revise the systematics of the genus at the subgeneric level. Several quantitative and qualitative characteristics including filaments' morphology, length, color, ornaments, and anthers' length, color, and attachment were studied in 27 Fritillaria species. For the species under study, a clustering dendrogram was constructed based on these characters, and a phylogenetic tree was built using a phylogenetic backbone based on the botanical nomenclature of The Plant List in R software. The results showed some correspondence between the dendrogram and phylogenetic tree, indicating the relative usefulness of filament and anthers' ultrastructure characters in the systematics of Fritillaria at the subgeneric level. Moreover, both trees were correspondent in suggesting that the members of subgenus Fritillaria were not monophyletic, and a sister relationship between the subgenera Petilium and Theresia.
    Keywords: Fritillaria, Liliaceae, Filament, Anther, Classification, SEM
  • امیرحسین بابائی پور*، اصغر میلان

    امروزه استفاده از تصاویر پهپاد در مطالعات مرتبط با حوزه های مختلف از  جمله  برنامه ریزی شهری بسیار گسترش یافته است. بهره گیری از فتوگرامتری پهپاد به عنوان یک ابزار پیشرفته در تحلیل تغییرات شهری و ساختمانی، یک روش نوین در تحقیقات مربوط به مکانیابی محسوب می شود. لذا در این تحقیق، استفاده از تصاویر پهپاد مدل DJI_Phantom 4 Pro_RTK با دقت نسبی 10 سانتی متر در کنار تصاویر رقومی هوایی دوربین التراکم ایکس با دقت نسبی 20 سانتی متر، با تمرکز بر ارزیابی ظرفیت داده های پهپادی در شناسایی و تحلیل تغییرات کاربری اراضی در محیط های پر تراکم شهری منطقه تبریز مورد بررسی قرار گرفته است. بدین منظور از دو سری داده که شامل تصویر تصحیح شده ارتوموزاییک دوربین التراکم مربوط به روز 20 خرداد ماه سال 1392 و تصاویر خام پهپاد از همان منطقه برای روز 13 تیر ماه سال 1401 می باشد، استفاده شده است. در ادامه پس از تصحیح هندسی و تهیه ارتوفتو از تصاویر خام پهپادی با دقت مسطحاتی 8 سانتی متر و دقت ارتفاعی 14 سانتی متر، دو الگوریتم طبقه بندی حداکثر احتمال و حداقل فاصله بر روی تصویر ارتوموزاییک التراکم و تصویر ارتوفتو پهپادی اعمال شد. در مرحله بعد، از روش شناسایی تغییرات موضوعی برای استخراج تغییرات در کلاس های پوشش اراضی به وجود آمده به وسیله دو الگوریتم طبقه بندی، استفاده گردید. ارزیابی بصری نتایج نشان داد که در هردو روش مورد استفاده، کلاس اراضی ساختمانی کمترین تغییر را نسبت به سایر کلاس ها داشته است. یافته های کمی بیانگر این است که ضریب کاپا و دقت کلی نتایج حاصل از طبقه بندی حداکثر احتمال و حداقل فاصله به ترتیب، 0/8924  و 94/1176  درصد و همچنین 0/5273  و 69/2308  بوده است. علاوه بر این، تحلیل نتایج کمی حاکی از آن است که بیشترین تغییرات کاربری اراضی مربوط به تبدیل کلاس ساختمان به جاده در حدود 9 درصد بوده، در حالی که کمترین میزان تغییرات در تبدیل کلاس جاده به زمین بایر در حدود 1/5  درصد مشاهده شده است.

    کلید واژگان: شناسایی تغییرات، کاربری اراضی، فتوگرامتری پهپاد مبنا، طبقه بندی، تصاویر با قدرت تفکیک بالا
    Amirhosein Babaeepour*, Asghar Milan

    The use of drone imagery has become widespread in studies related to various fields, including urban planning. The application of drone photogrammetry as an advanced tool for analyzing urban and construction changes is considered a novel method in spatial-based research. In this study, the potential of drone imagery, specifically DJI Phantom 4 Pro RTK with a relative accuracy of 10 cm, alongside ultra-cam aerial images with a relative accuracy of 20 cm, was explored for identifying and analyzing land-use changes in densely urbanized areas of the Tabriz region. To achieve this, two data sets were utilized, including a corrected orthomosaic image from the ultra-cam camera captured on June 9, 2013, and raw drone images from the same area on July 4, 2022. After geometric correction and the creation of orthophotos from the raw drone images, with horizontal accuracy of 8 cm and vertical accuracy of 14 cm, two classification algorithms, maximum likelihood and minimum distance, were applied to the orthomosaic image and the drone orthophoto. The next step involved using the thematic change detection method to extract land-use changes in the identified classes based on the two classification algorithms. Visual evaluation of the results revealed that the building class experienced the least change compared to other classes. Quantitative findings showed that the Kappa coefficient and overall accuracy for the maximum likelihood and minimum distance classification methods were 0.8924 and 94.17%, and 0.5273 and 93.08%, respectively. Additionally, quantitative analysis indicated that the greatest land-use change involved the conversion of buildings to roads, while the least change occurred in the transformation from roads to barren land.

    Keywords: Change Detection, Landuse, Drone Photogrammetry, Classification, High Resolution Images
  • Javad Gerami

      In the traditional data envelopment analysis (DEA) models, the role of measures from input and output aspects is known. However, in many cases, we face a situation where some measures can play the role of input or output. The role of these measures is determined as input or output with the aim of maximizing the efficiency of the decision making unit (DMU) under evaluation. In this paper, we present a novel inverse DEA model to classify these inputs and outputs. We determine the new level of inputs and outputs and flexible measures by choosing the target efficiency for the DMUs. In this regard, the new model may choose flexible measures as input or output, but the main goal is to reach the target efficiency level. In the following, we will illustrate the presented approach with a simple numerical example. Finally, a numerical real example propose in the banking industry in Indonesia to clarify and demonstrate the suggested approach. We also bring the results of the models.

    Keywords: Data Envelopment Analysis, Inverse DEA, Classification, Flexible Measures, Target Efficiency
  • سجاد زارعی*، کاظم رنگزن، دانیا کریمی، شیوا مرادی
    ارزیابی بیماری زنگ زرد گندم در بخشی از استان خوزستان در دو مرحله شروع و اوج بیماری با روش های مبتنی بر NDVI، GNDVI و MSI، مبتنی بر طبقه بندی با تصاویر سنتینل-2 و لندست-8، و مبتنی بر تلفیق تصاویر انجام شد. با استفاده از باندهای مرئی و مادون قرمز بیماری شناسایی شد. سپس تصاویر سنتینل-2 و لندست-8 طبقه بندی شدند و در آنها زنگ زرد شناسایی شد، و نهایتا با تلفیق تصاویر این دو ماهواره نیز بیماری شناسایی شد. همچنین میزان دقت هر کدام از روش های ذکر شده، برای ارائه بهترین تکنیک شناسایی زنگ زرد در مناطق مشابه محاسبه و مقایسه گردید. دو سناریوی اول نشان دادند که طبقه بندی تصویر لندست-8 در شروع بیماری با RMSE برابر با 845/0 و طبقه بندی تصویر سنتینل-2 در اوج بیماری با RMSE برابر با 845/0 بهترین نتایج را داشته اند. مقایسه شاخص های گیاهی نشان داد که NDVI در شروع بیماری (تصویر سنتینل-2 با RMSE برابر با 959/0) و اوج بیماری (تصویر لندست-8 با RMSE برابر با 959/0) بهترین نتیجه را داشته اند. مقایسه سناریوهای اجراشده نشان داد که تلفیق تصاویر لندست-8 و سنتینل-2 برای طبقه بندی در دو مرحله شروع و اوج بیماری بهترین نتایج را داشته است. روش تلفیق IHS بهترین نتیجه طبقه بندی بیماری را در مرحله شروع با RMSE برابر با 809/0 داشته است، درحالی که روش تلفیق GST بهترین نتیجه را در مرحله اوج بیماری با RMSE برابر با 793/0 ارائه داد. نتایج این پژوهش موید قابلیت بالای تلفیق تصاویر ماهواره ای در بهبود نتایج طبقه بندی زنگ زرد می باشند.
    کلید واژگان: سنتینل-2، لندست-8، زنگ زرد گندم، شاخص های گیاهی، طبقه بندی
    Sajad Zareie *, Kazem Rangzan, Danya Karimi, Shiva Moradi
    Evaluation of wheat yellow rust was done in a part of Khuzestan for two beginning and peak stages of disease, using the methods based on NDVI, GNDVI and MSI, based on classification using images of Sentinel-2 and Landsat-8, and based on images fusion. Disease was detected using visible and infrared bands. Then Sentinel-2 and Landsat-8 images were classified and disease was detected in them, finally, disease was detected by fusion of the images of two satellites. Also, accuracy of each of the mentioned methods was calculated and compared to provide the best technique for detecting disease in similar areas. Two first scenarios shows that Landsat-8 image classification for disease beginning stage with RMSE equal to 0.845 and Sentinel-2 image classification for disease peak stage with RMSE equal to 0.845, have had the best results. Comparison of vegetation indexes showed that NDVI in disease beginning (Sentinel-2 image with RMSE equal to 0.959) and disease peak (Landsat-8 image with RMSE equal to 0.959) had the best result. Comparison of all the implemented scenarios in this research shows that classification based on fusion of Landsat-8 and Sentinel-2 images was the best for classification in both beginning and peak stages of disease. IHS fusion method had the best results for disease classification in beginning stage with RMSE equal to 0.809, while GST fusion was the best in peak stage with RMSE equal to 0.793. Present research results confirm a high capability of satellite images fusion for improving classification results of wheat yellow rust disease.
    Keywords: Sentinel-2, Landsat-8, Wheat Yellow Rust, Plant Indicators, Classification
  • Manizheh Safarkhani Gargari, Mirhojjat Seyedi *, Mehdi Alilou
    Glaucoma stands out as a prevalent ocular ailment in the elderly population, causing substantial harm to the optic nerves and eventual vision impairment. Fundus photography plays a pivotal role in the clinical assessment of glaucoma, facilitating the exploration of associated morphological alterations. Computational algorithms, capable of processing fundus images, have emerged as indispensable tools in this diagnostic domain. Hence, the imperative development of an automated diagnostic system leveraging image processing techniques is underscored. In this study, a novel approach to the segmentation and classification of retinal optic nerve head images is introduced. This method concurrently executes both tasks through a deep learning framework, thereby enhancing the learning speed within the network. The proposed network encompasses approximately 29 million parameters and demonstrates an efficiency of 2.5 seconds for segmenting and classifying retinal images. Central to this strategy is a multi-task deep learning network, harmonizing segmentation and classification processes, and leveraging information from both tasks to optimize learning efficacy. Validation of the proposed method is conducted using the publicly available ORIGA dataset. The attained performance metrics for accuracy, sensitivity, specificity, and F1-score are 99.461, 93.46, 100, and 98.7006, respectively. These results collectively affirm the substantial advancement achieved by the proposed method in comparison to existing methodologies.
    Keywords: Deep Learning, Convolutional Neural Network, Classification, Retinal Images, Disease Diagnosis, Multitasking Network
  • Simrandeep Kaur *, Arti Singh, Abha Aggarwal
    This study introduces a novel approach integrating a support vector machine (SVM) with an optimal portfolio construction model. Leveraging the Radial Basis Function (RBF) kernel, the SVM identifies assets with higher growth potential. However, due to inherent uncertainties, some input points may not be precisely classified into their respective classes in various applications. To mitigate the influence of noise, a new fuzzy support vector machine (NFSVM) is employed to select assets. Here, each sample point is assigned a membership value using a fuzzy membership function, as documented in existing literature [1]. Additionally, the SVM model incorporates principal component analysis (PCA)to eliminate correlated technical indicators. Further, Markowitz’s mean-variance model (MV model) with cardinality constraints and without cardinality constraints is employed for the assets selected by SVM, FSVM, and NFSVM for optimal portfolio construction.The performance of the proposed model is experimentally assessed using a data set derived from the Nifty 50 and Euro Stoxx 50 index. The experimental results demonstrate that the optimal portfolio obtained from the NFSVM with the Markowitz mean-variance model outperforms the one generated by the SVM. This outcome substantiates the effectiveness and efficiency of the proposed model as an advanced approach for optimizing investment portfolios.
    Keywords: Fuzzy Support Vector Machines, Markowitz Mean-Variance Model, Portfolio Optimization, Classification, Prediction, Fuzzy Membership Function
  • B. Zeighami, M. Mohseni Takallo, M. Aaly, S.S. Ahn, R.A. Borzooei *
    L-algebras, connected to algebraic logic and quantum structures, were first introduced by Rump [13]. In [5], the number of some finite L-algebras is counted. But classifying and finding examples of L-algebras is not always an easy task and is very important. So, in this paper, we classify the set of all non-isomorphic L-algebras up to order 4. For this, we define the notion of partial and total conditions and by using them, we characterize all of the L-algebras of orders 2, 3 and 4. We prove that that there are 5 L-algebras of order 3 and 44 L-algebras of order 4, up to isomorphism.
    Keywords: L-Algebra, Classification, Partial Condition, Total Condition
  • Shahnaz Hatami *, Mohammad Hatami-B, Danial Kahrizi

    In the realm of agriculture and natural resources, medicinal plants stand out as a valuable resource. In recent years, faced with challenges such as predicting climate changes, soil classification, land use, and identifying patterns, there is a growing need for optimal techniques with higher efficiency, particularly in the cultivation of medicinal plants. Therefore, this article introduces the application of data mining to analyze available data in the agriculture and natural resources areas, focusing specifically on the medicinal plant industry. The primary objective is to explore data mining techniques that can enhance various aspects of medicinal plant cultivation, addressing challenges related to climate predictions, soil classification, and optimizing production. The article concludes by presenting the most effective data analysis methods in this domain, accompanied by their corresponding algorithms. Additionally, the aforementioned research is a guide for those intending to investigate the applications of data mining methods are highlighted for increased productivity, encompassing areas such as predicting crop yield, forecasting weather conditions, rainfall patterns, seed and plant conditions, soil quality, and medicinal plant production. The summarization and analysis of the outcome indicated that implementing AI could improve the design and process engineering strategies in bioprocessing fields.

    Keywords: Data Mining, Medicinal plants, Classification, Clustering
  • Sarah Navidi, M. Rostamy Malkhalifeh*, G. Tohidi, Mohammad Nhassa Behzadi

    Two of the essential and important topics of scholars' research are congestion and classification in Data Envelopment Analysis. There are lots of papers that researchers represented their methods in these fields separately. Assume that there is a different method that can predict the congestion of Decision Making Units. In this paper, we represented our method that predicts the congestion of DMUs instead of calculating their congestion. The advantage of this method is for the time that measured the congestion of DMUs but we need to add new DMUs and we do not want to calculate the congestion of all DMUs again. For this reason, we define available DMUs into three groups such as DMUs with strong congestion, DMUs with weak congestion, and DMUs with no congestion; then predict the congestion of new DMU. In the last section, we represent the numerical example of our purpose method. The result shows that the prediction of congestion is so correct.

    Keywords: Data Envelopment Analysis, Discriminant Analysis, Congestion, Classification, Decision Making Unit
  • Sarah Navidi*, Mohsen Rostamy-Malkhalifeh

    One of the interesting subjects that amuse the mind of researchers is surmising the correct classification of a new sample by using available data. Data Envelopment Analysis (DEA) and Discriminant Analysis (DA) can classify data by each one alone. DEA classifies as efficient and inefficient groups and DA classify by historical data. Merge these two methods is a powerful tool for classifying the data. Since, in the real world, in many cases we do not have the exact data, so we use imprecise data (e.g. fuzzy and interval data) in these cases. So, in this paper, we represent our new DEA-DA method by using Mixed-Integer Nonlinear Programming (MINLP) to classify with imprecise data to more than two groups. Then we represent an empirical example of our purpose method on the Iranian pharmaceutical stock companies' data. In our research, we divided pharmaceutical stock companies into four groups with imprecise data (fuzzy and interval data). Since, most of the classical DA models used for two groups, the advantage of the proposed model is beheld. The result shows that the model can predict and classify more than two groups (as many as we want) with imprecise data so correct.

    Keywords: Imprecise data, Data Envelopment Analysis, Classification, Mixed-Integer Nonlinear Programming, Discriminant analysis
  • Mahdi Banaee *, Amir Zeidi, Caterina Faggio

    Computational toxicology is a rapidly growing field that utilizes artificial intelligence (AI) and machine learning (ML) to predict the toxicity of chemical compounds. Computational toxicology is an important tool for assessing the risks associated with the exposure of finfish and shellfish to environmental contaminants. By providing insights into the behavior and effects of these compounds, computational models can help to inform management decisions and protect the health of aquatic ecosystems and the humans who depend on them for food and recreation. In aqua-toxicology research, Quantitative Structure-Activity Relationship (QSAR) models are commonly used to establish the relationship between chemical structures and their aquatic toxicity. Various ML algorithms have been developed to construct QSAR models, including Random Forest (RF), Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Bayesian networks (BNs), k-Nearest Neighbor (kNN), Probabilistic Neural Networks (PNNs), Naïve Bayes, and Decision Trees. Deep learning techniques, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), have also been applied in computational toxicology to improve the accuracy of QSAR predictions. Moreover, data mining graphs, networks and graph kernels have been utilized to extract relevant features from chemical structures and improve predictive capabilities. In conclusion, the application of artificial intelligence and machine learning in the field of computational toxicology has immense potential to revolutionize aquatic toxicology research. Through the utilization of advanced algorithms and data analysis techniques, scientists can now better understand and predict the effects of various toxicants on aquatic organisms.

    Keywords: Predictive modeling, QSPR modeling, Data integration, analysis, Toxicity prediction, classification, Data mining, knowledge discovery
  • سارا بیات، سکینه دهقان*

    این مقاله به بیان یک رویکرد ناپارامتری بر اساس تابع ژرفا برای رده بندی داده های چند متغیره به چندین رده می پردازد. پیاده سازی این روش برخلاف اغلب روش های ناپارامتری دارای پیچیدگی محاسباتی نیست و در صورت برقراری فرض تقارن بیضوی مشاهدات، با قاعده  بهینه بیزی معادل است. ارزیابی عملکرد این رده بندی ساز بر اساس توابع ژرفای مختلف، بر اساس مطالعات شبیه سازی و تحلیل داده های واقعی انجام می شود.

    کلید واژگان: تابع ژرفا، رده بندی، تقارن بیضوی، قاعده ی بهینه بیزی
    Sara Bayat, Sakineh Dehghan*

    ‎This paper presents a nonparametric multi-class depth-based classification approach for multivariate data. This approach is easy to implement rather than most existing nonparametric methods that have computational complexity. If the assumption of the elliptical symmetry holds, this method is equivalent to the Bayes optimal rule. Some simulated data sets as well as real example have been used to evaluate the performance of these depth-based classifiers.

    Keywords: Depth Function, Classification‎‎, Bayes Optimal Rule, ‎Elliptical Symmetry
  • نیلیا موسوی*، موسی گلعلی زاده

    پیشرفت سرطان در بین بیماران را می توان از طریق ایجاد مجموعه ای از نشانگرهای ژن با روش های تحلیل آماری داده ها بررسی کرد. اما یکی از مشکلات اساسی در مطالعه آماری این نوع داده ها وجود تعداد زیاد ژن ها در مقابل تعداد کم نمونه هاست. بنابراین، استفاده از روش های کاهش ابعاد برای حذف و یافتن تعداد بهینه ای از ژن ها برای پیش بینی صحیح رده های موردنظر، امری ضروری است. از طرفی، انتخاب یک روش کاهش ابعاد مناسب، می تواند به استخراج اطلاعات ارزشمند و افزایش کارایی یادگیری کمک کند. در این پژوهش از رویکرد یادگیری دسته ای به نام دسته ماشین بردار پشتیبان تصادفی برای یافتن مجموعه ویژگی بهینه، استفاده می شود. در تحلیل داده های واقعی مقاله حاضر، نشان داده می شود با تبدیل داده های بعد بالا به زیرفضاهایی با بعد پایین تر و ترکیب مدل های ماشین بردار پشتیبان، علاوه بر یافتن مجموعه ای از ژن های موثر در بروز سرطان پروستات، دقت رده بندی نیز افزایش می یابد.

    کلید واژگان: یادگیری دسته ای، کاهش ابعاد، رده بندی، دسته ماشین بردار پشتیبان تصادفی، مجموعه ویژگی بهینه
    Nilia Mosavi*, Mousa Golalizadeh

    Cancer progression among patients can be assessed by creating a set of gene markers using statistical data analysis methods. Still, one of the main problems in the statistical study of this type of data is the large number of genes versus a small number of samples. Therefore, it is essential to use dimensionality reduction techniques to eliminate and find the optimal number of genes to predict the desired classes accurately. On the other hand, choosing an appropriate method can help extract valuable information and improve the machine learning model's efficiency. This article uses an ensemble learning approach, a random support vector machine cluster, to find the optimal feature set. In the current paper and in dealing with real data, it is shown that via randomly projecting the original high-dimensional feature space onto multiple lower-dimensional feature subspaces and combining support vector machine classifiers, not only the essential genes are found in causing prostate cancer, but also the classification precision is increased.

    Keywords: Ensemble Learning, Dimensionality Reduction, Classification, Random Support Vector Machine Cluster, Optimal Feature Set
  • Abdolreza Zarandi Baghini, Hojat Babaei, Ramin Tabatabaei Mirhosseini *, Lida Torkzadeh Tabrizi
    Classifying objects based on the simultaneous impact of various parameters has always been challenging due to heterogeneity, impact conflict, and sometimes parameter uncertainty. The purpose of this study is to provide a method for classifying such data. In the proposed method, fuzzy hypergraphs were used to define the granular structures in order to apply the simultaneous effect of heterogeneous and weighted parameters in the classification. This method has been implemented and validated on Fisher's intuitive research in relation to the classification of iris flowers. Evaluation and comparison of the proposed method with Fisher’s experimental results showed higher efficiency and accuracy in flower classification. The proposed method has been used to assess the seismic risk of 50,000 buildings based on 10 heterogeneous parameters. Seismic risk classification showed that more than 88% of buildings were classified, and 12% of buildings that could not be classified due to excessive scatter of parameter values were classified using a very small confidence radius. The results indicate the ability of the proposed method to classify objects with the least similarity and number of effective parameters in classification.
    Keywords: Hypergraph, Fuzzy membership degree, Fuzzy hypergraph, Classification, Granular computing, Urban vulnerability
  • منصور راسخ*، فریبا علی محمدی سراب، یوسف عباسپور گیلانده، ولی رسولی شربیانی، امیرحسین افکاری سیاح، حامد کرمی

    ذرت (zea mays) یکی از مهم ترین گیاهان زراعی در دنیا محسوب می شود، به گونه ای که بعد از گندم و برنج در رتبه سوم از نظر سطح زیر کشت قرار دارد. هدف از این مطالعه تمایز و طبقه بندی دانه های ذرت در سه رقم بطور غیرمخرب با استفاده از فناوری پردازش تصویر می باشد. سه رقم بذر ذرت در دو حالت تکدانه و توده تحت تصویربرداری قرار گرفتند. از 180 نمونه بصورت تکدانه با 60 تکرار (در حالت پشت و رو)همراه با اندازه گیری وزن و ابعاد دانه ها برای هر رقم، همچنین از 9 نمونه دیگر بصورت توده با 3 تکرار همراه با اندازه گیری وزن و ابعاد ده عدد دانه با انتخاب تصادفی از هر نمونه توده ای برای هر رقم استفاده شد. متغیرهای پیش بینی کننده شامل مساحت، محیط، قطر اصلی بزرگ، قطر اصلی کوچک، یکپارچگی، بی قاعدگی، مساحت محدب ، قطر معادل، شاخص رنگ قرمز ، شاخص رنگ سبز ،شاخص رنگ آبی ، وزن و ابعاد سه گانه اندازه گیری شده بطور دستی در کنار پارامتر جهت تصویربرداری بودند. نتایج نشان داد در طبقه بندی با روش آنالیز تشخیصی خطی با در نظر گرفتن 16 متغیر پیش بینی کننده دقت 70/6 درصد و با روش گام به گام و حذف برخی متغیرها و استفاده از 8 متغیر پیش بینی کننده همان دقت 70/6 درصد بدست آمد. مهم ترین متغیرهای پیش بینی کننده عبارت بودند از: ضخامت، محور اصلی بزرگ، محور اصلی کوچک، بی قاعدگی، قطر معادل، یکپارچگی، شاخص رنگ قرمز و شاخص رنگ سبز. همچنین دقت روش تحلیل شبکه های عصبی مصنوعی (ANN) با 16 متغیر پیش بینی کننده و 8 متغیر پیش بینی کننده به ترتیب برابر با 75/6و 72/2درصد به دست آمد که این مقدار بالاتر از روش LDA بود.

    کلید واژگان: ذرت، طبقه بندی، پردازش تصویر، شبکه های عصبی مصنوعی، LDA
    Mansour Rasekh *, Fariba Alimohammadi Sarab, Yousef Abbaspour-Gilandeh, Vali Rasooli Sharabiani, Amir Hossein Afkari-Sayyah, Hamed Karami
    Introduction

    Maize (Zea mays. L) is one of the most important crops acrossthe world that ranks third in terms of acreage behind wheat and rice. As this crop can adapt to different climatic conditions, it is of great importance and has a large area under cultivation.Therefore, maize is one of the major products of temperate, warm-temperate, subtropical, and humid regions. After wheat, rice, and barley, this plant is the main crop in Iran with the largest cultivated area.There are different types of maizeseeds, so their classification is essential to ensure quality. A key component of sustainable agriculture is quality assurance. On the one hand, techniques such as drying, cooling, and edible coating must be used to maintain the quality of agricultural products. On the other hand, effective and efficient methods should be developed to evaluate and classify their quality, which is used in seed and seedling processing centers, silos, and mechanized warehouses.The detection of various varieties of crop seeds using instrumental methods has been the subject of extensive research. As a non-destructive and rapid inspection method for the recognition and classification of cereal seed varieties, the visual machine is available. Machine vision-based automated methods can have a positive impact on food processing. In other words, this tool is the process of preparing and analyzing images of a real scene using a computer to obtain information or control a process. The features of images can be extracted using this machine to recognize and identify the quality of different types of products. To identify the types of plants, their growth patterns, and the effects of the environment on them to obtain more and superior products, machine vision occupies a special place and is one of the most important research areas. Inspection and quality control of factory output products is an important application of machine vision.Advances in image processing technology have opened up a wide range of machine vision applications in agriculture. The development of powerful microcomputers and specialized software has led to the use of image processing for the inspection of fruits and agricultural products, especially for quality control and sorting. Many agricultural products sorting systems used to separate fruits or crops based on color, shape, size, the extent of damage, crushing, bursting, spotting, etc., now rely on visual machines and image processing functions.Images of products moving on the conveyor system are taken by a CCD camera, transmitted to a computer for processing, and in these systems, the necessary data are extracted from them. Depending on the information obtained, commands are then issued to activate or deactivate a mechanical part so that the product can be removed from or allowed to cross the main path. Sorting is a common practice in many industries. Compared to mechanical systems, machine vision technology offers the highest accuracy and quality at the lowest cost and with the lowest error rate, so it can be considered the most effective solution to this problem. The agricultural industry is one of the areas where sorting and grading systems based on machine vision are urgently needed.The core elements of machine vision are image processing and analysis used together with new methods and classifiers such as neural networks, backup vector machines, fuzzy logic, etc. to perform classifications and required measurements. This study aimed to identify seeds of three maize varieties using macroscopic imaging techniques, evaluate the morphological and chromatic features in maize grains, and discriminate varieties using a stepwise method and remove some variables using LDA and ANN.

    Methodology

    Three seed varieties of single cross 703,single cross 704, and single cross 705 were provided by the Agricultural and Natural Resources Research Centre of Ardabil Province in Pars Abad Moghan. The seeds were then taken to the Biophysical Properties Laboratory of the Department of Biosystems and Mechanical Engineering, MohagheghArdabili University.Three samples (20 g) of each variety were stored in a laboratory oven at 105 °C for 24 h to determine the initial moisture content of maize grains. According to the dry weight of grains, the initial moisture content of them was calculated by 10.50%. To distinguish 3 maize varieties, 180 samples were analyzed as single seeds (30 replicates in the anterior direction and 30 replicates in the posterior direction) for each variety with 60 replicates. In addition, 9 more samples were used in bulk with 3 replicates for each variety.Thus, we imaged a total of 189 samples. In addition, a digital scale with an accuracy of 0.001 g was used to measure the weight of the grains. Computer vision systems consist of five main components: lighting chamber, camera, analogue-digital card (for digitization), computer, and computer software. Images were taken using a Canon IXY DIGITAL 510 IS digital camera. A dome-shaped chamber was used to reduce noise and control ambient light. The system was illuminated with four fluorescent lamps and two rows of LED lamps, one white and one yellow. While the camera was pointed perpendicular to the imaging surface, it provided images with a resolution of 12.1 megapixels.In this case, the images were processed using MATLAB software. First, 10 maize seeds were randomly sampled from the first variety (single cross 703) and weighed using a digital balance. Then, parameters such as the large and small diameters and thickness of each grain were measured using a caliper of 0.02 mm. Then, these grains were placed at appropriate distances from each other on a plate of red cardboard in the opposite direction to be imaged. Finally, 30 maizeseeds were imaged in both directions and 60 images were taken as single seed. In total, we obtained 180 images of all three varieties as single seeds. To prepare the mass, first, some seeds of the first variety were placed in a cylindrical container (1.5 cm high, 4.2 cm in basal diameter, and 70.62174 cm2 in volume) so that the container was filled. After weighing, the mass of grains with a certain volume was poured onto the red plate in a circular pattern. In the end, the camera was placed on the bulk sample and the image was taken, just like the single grain image.The same procedure was repeated twice more on two more bulk samples of the first variety. Similarly, three bulk samples of two more varieties were imaged. In this way, a total of nine images were obtained. After each imaging, we measured and recorded the dimensions and weight of 10 randomly selected seeds from the imaged bulk. In the end, 189 images were obtained, including 180 single-grain and 9 bulk images.In the single sample feature extraction step using the bwlabel function, all samples were labeled and the grain morphological features were extracted. Then, the set of Regionprop functions was used to determine eight parameters, including area, perimeter, major principal axis, minor principal axis, integrity, irregularity, convex area, and equivalent diameter. An artificial neural network (NAA) and a statistical linear discriminant analysis (LDA) method were used to identify maize varieties based on their morphological and color characteristics. The data were normalized before analysis. LDA is a statistical method for classifying objects based on independent variables. The analysis was carried out using SPSS software. The diagnostic analysis includes stepwise analysis, principal component analysis, and elimination of recursive features. In this study, the stepwise method was used. In the usual method, all variables are included in the analysis. However, in the stepwise method, some variables were removed and only the variables with the greatest influence on the model were included. To classify the maize varieties, a network consisting of three layers: input, output, and hidden layers was used.

    Conclusion

    We performed image processing to classify three maize varieties based on the results obtained. A linear diagnostic analysis method was used in this study. A total of 16 predictor variables were used with an accuracy of 70.6%. Some variables were eliminated by a stepwise method. In addition, eight other predictor variables were analyzed with the same accuracy of 70.6%. Thus, although the number of predictor variables was reduced, the detection accuracy remained constant. Moreover, the highest accuracy of diagnosis (80%) was associated with the first variety (single cross 703). Additionally, the accuracy of the methods of ANN with 16 and 8 predictor variables was 75.6% and 72.2%, respectively. These values were higher than that of LDA.Predictive variables included areas, perimeter, major principal diameters, minor principal diameters, irregularities, concave areas, equivalent diameters, color indices (red, green, and blue) resulting from maize grain sample processing, weight, and grain size. The following factors were the most important predictors of varietal discrimination: thickness, major principal axis, minor principal axis, irregularity, equivalent diameter, integrity, red color index, and green color index. According to the results, the length and width of individual grains had no significant effect on variety classification.Our finding demonstrated thatmachine vision technology can be used in seed and seedling processing centers, silos, mechanized warehouses, and other places where maize seed crops need to be identified and separated in a non-destructive manner.

    Keywords: maize, Classification, image processing, Artificial Neural Networks, LDA
  • Roozbeh Rahmani, Shahin Akbarpour *, Ali Farzan
    Breast cancer is known to be among the most prevalent cause of mortality among women. Since early breast cancer diagnosis increases survival chances, the development of a system with a highly accurate output to detect suspicious masses in mammographic images is of great significance. Thus, many studies have focused on the development of methods with favorable performance and acceptable accuracy to detect cancerous masses, proposed various techniques to diagnose breast cancer, and compared their accuracies. Most previous studies have used composite selection and feature reduction techniques to detect breast cancer and accelerate its treatment; however, most have failed to reach the desired accuracy due to the selection of ineffective features and the lack of a proper analytical method for the features. The present study reviews the methods proposed to detect breast cancer so far and analyzes the process of feature vector optimization techniques as well as the normal/abnormal and benign/malignant mass classification.
    Keywords: Breast cancer detection, feature extraction, Classification, Mammographic images
  • Maryem Jaziri *, Afif Masmoudi
    Given the importance of policyholder classification in helping to make a good decision in predicting optimal premiums for actuaries.This paper proposes, first, an optimal construction of policyholder classes. Second, Poisson-negative Binomial mixture regression model is proposed as an alternative to deal with the overdispersion of these classes.The proposed method is unique in that it takes Tunisian data and classifies the insured population based on the K-means approach which is an unsupervised machine learning algorithm. The choice of the model becomes extremely difficult due to the presence of zero mass in one of the classes and the significant degree of overdispersion. For this purpose, we proposed a mixture regression model that leads us to estimate the density of each class and to predict its probability distribution that allows us to understand the underlying properties of our data. In the learning phase, we estimate the values of the model parameters using the Expectation-Maximization algorithm. This allows us to determine the probability of occurrence of each new insured to create the most accurate classification. The goal of using mixed regression is to get as heterogeneous a classification as possible while having a better approximation. The proposed mixed regression model, which uses a number of factors, has been evaluated on different criteria, including mean square error, variance, chi-square test and accuracy. According to the experimental findings on several datasets, the approach can reach an overall accuracy of 80%. Then, the application on real Tunisian data shows the effectiveness of using the mixed regression model.
    Keywords: Classification‎, ‎K-means‎, ‎Mixture regression‎, ‎Overdispersion‎, ‎MSE‎, ‎Frequency
  • Alfredo Cuzzocrea *, Enzo Mumolo, Islam Belmerabet, Abderraouf Hafsaoui
    Cloud-based machine learning tools for enhanced Big Data applications}‎, ‎where the main idea is that of predicting the ``\emph{next}'' \emph{workload} occurring against the target Cloud infrastructure via an innovative \emph{ensemble-based approach} that combines the effectiveness of different well-known \emph{classifiers} in order to enhance the whole accuracy of the final classification‎, ‎which is very relevant at now in the specific context of \emph{Big Data}‎. ‎The so-called \emph{workload categorization problem} plays a critical role in improving the efficiency and reliability of Cloud-based big data applications‎. ‎Implementation-wise‎, ‎our method proposes deploying Cloud entities that participate in the distributed classification approach on top of \emph{virtual machines}‎, ‎which represent classical ``commodity'' settings for Cloud-based big data applications‎. ‎Given a number of known reference workloads‎, ‎and an unknown workload‎, ‎in this paper we deal with the problem of finding the reference workload which is most similar to the unknown one‎. ‎The depicted scenario turns out to be useful in a plethora of modern information system applications‎. ‎We name this problem as \emph{coarse-grained workload classification}‎, ‎because‎, ‎instead of characterizing the unknown workload in terms of finer behaviors‎, ‎such as CPU‎, ‎memory‎, ‎disk‎, ‎or network intensive patterns‎, ‎we classify the whole unknown workload as one of the (possible) reference workloads‎. ‎Reference workloads represent a category of workloads that are relevant in a given applicative environment‎. ‎In particular‎, ‎we focus our attention on the classification problem described above in the special case represented by \emph{virtualized environments}‎. ‎Today‎, ‎\emph{Virtual Machines} (VMs) have become very popular because they offer important advantages to modern computing environments such as cloud computing or server farms‎. ‎In virtualization frameworks‎, ‎workload classification is very useful for accounting‎, ‎security reasons‎, ‎or user profiling‎. ‎Hence‎, ‎our research makes more sense in such environments‎, ‎and it turns out to be very useful in a special context like Cloud Computing‎, ‎which is emerging now‎. ‎In this respect‎, ‎our approach consists of running several machine learning-based classifiers of different workload models‎, ‎and then deriving the best classifier produced by the \emph{Dempster-Shafer Fusion}‎, ‎in order to magnify the accuracy of the final classification‎. ‎Experimental assessment and analysis clearly confirm the benefits derived from our classification framework‎. ‎The running programs which produce unknown workloads to be classified are treated in a similar way‎. ‎A fundamental aspect of this paper concerns the successful use of data fusion in workload classification‎. ‎Different types of metrics are in fact fused together using the Dempster-Shafer theory of evidence combination‎, ‎giving a classification accuracy of slightly less than $80\%$‎. ‎The acquisition of data from the running process‎, ‎the pre-processing algorithms‎, ‎and the workload classification are described in detail‎. ‎Various classical algorithms have been used for classification to classify the workloads‎, ‎and the results are compared‎.
    Keywords: Virtual machines‎, ‎Workload‎, ‎Dempster-Shafer theory‎, ‎Classification‎
  • پروین باقری فر*، رضا بصیری، شهرام یوسفی خانقاه، حمیدرضا پورخباز
    زمینه و هدف

    فن آوری سنجش ازدور در دنیای پیشرفته امروزی به عنوان یکی از مهم ترین و عمده ترین منابع داده های مکانی و موضوعی قلمداد می شود. در این مقاله هدف مقایسه دو روش جهت آشکار سازی تغییرات جنگل با استفاده از تصاویر ماهواره لندست می باشد. بدین منظور از تصاویر سال 1369 سنجنده TM ماهواره لندست و هم چنین تصاویر سال 1390 سنجنده ETM+ این ماهواره استفاده شده است.

    روش بررسی

    در طبقه بندی تصاویر، از روش طبقه بندی نظارت شده و الگوریتم حداکثر احتمال و شبکه عصبی مصنوعی به شیوه پرسپترون چندلایه استفاده گردید.

    یافته ها

    بر اساس نتایج به دست آمده الگوریتم شبکه عصبی مصنوعی در مقایسه با  حداکثر احتمال صحت کلی و ضریب کاپای بالاتری در هر دو تصویر (TM و ETM+) نشان داده است. پس از طبقه بندی، نقشه های استخراج شده از تصاویر TM و ETM+ به منظور آشکارسازی تغییرات روی هم گذاری شدند و نقشه تغییرات به دست آمد.

    بحث و نتیجه گیری

    نتیجه نهایی تحقیق نشان می دهد که استفاده از داده های لندست همراه با داده های حاصل از آماربرداری قابلیت تهیه نقشه تغییرات جنگل را در منطقه موردمطالعه دارا می باشند.

    کلید واژگان: طبقه بندی، تصاویر لندست، سنجش ازدور، باغ ملک، خوزستان
    Parvin Bagherifar *, Reza Basiri, Shahram Yosefi Khaneghah, Hamidreza Pourkhabbaz
    Background and Objective

    Remote Sensing Technology is considered one of the most important sources of spatial and thematic data in the developed world of today. The objective of this work is a comparison of two different methods of change detection in forests using Landsat images. Therefore, sensor Landsat TM images of 1990 and 2011 (ETM+) satellite images have been used.

    Material and Methodology

    In the classification of images, the maximum likelihood algorithm, and artificial neural network to multilayer perceptron method were used.

    Findings

    Evaluated results showed that the algorithm approach, the maximum likelihood overall accuracy, and kappa coefficient maps classified in TM image, respectively, are 96.72 and 0.96 percent and image ETM+ 98.02 and 0.97 percent, and the method of artificial neural networks, overall accuracy and kappa coefficient map classified, TM image was 98.22 and 0.97% and ETM+ image was 98.34and 0.97 percent respectively. Following TM and ETM+ classification maps to detect the changes were marked and the map changes obtained.

    Discussion and conclusion

    The results of this study showed that using Landsat data along with data from have inventory capabilities of forest change mapping

    Keywords: Classification, Landsat images, Remote sensing, Baghmalek, Khuzestan
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال