به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « ‎Radial basis functions‎ » در نشریات گروه « علوم پایه »

  • Majid Darehmiraki *, Arezou Rezazadeh
    ‎In this paper‎, ‎we propose a radial basis function partition of unity (RBF-PU) method to solve sparce optimal control problem governed by the elliptic equation‎.‏ The objective function, in addition to the usual quadratic expressions, also includes an ‎L1-norm‎‎‎ of the control function to compute its spatio sparsity. ‎Meshless methods based on RBF approximation are widely used for solving PDE problems but PDE-constrained optimization problems have been barely solved by RBF methods‎. RBF methods have the benefits of being versatile in terms of geometry, simple to use in higher dimensions, and also having the ability to give spectral convergence. ‎In spite of these advantages‎, ‎when globally RBF collocation methods are used‎, ‎the interpolation matrix becomes dens and computational costs grow with increasing size of data set‎. ‎Thus‎, ‎for overcome on these problemes RBF-PU method will be proposed‎. ‎RBF‎ -‎PU methods reduce the computational effort‎. ‎The aim of this paper is to solve the first-order optimality conditions related to original problem‎.‎‎‎
    Keywords: ‎‎Sparse, Optimal Control, Radial Basis Functions, Partition Of Unity}
  • Asghar Rahimi, Elyas Shivanian *
    In the present paper, the relatively new method of Radial Basis Function-Generated Finite Difference (RBF-FD) is used to solve a class of Partial Differential Equations (PDEs) with Dirichlet and Robin boundary conditions. For this approximation, Polyharmonic Splines (PHS) are used alongside Polynomials. This combination has many benefits. On the other hand, Polyharmonic Splines have no shape parameter and therefore relieve us of the hassle of calculating the optimal shape parameter. As the first problem, a two-dimensional Poisson equation with the Dirichlet boundary condition is investigated in various domains. Then, an elliptic PDE with the Robin boundary condition is solved by the proposed method. The results of numerical studies indicate the excellent efficiency, accuracy and high speed of the method, while for these studies, very fluctuating and special test functions have been used.
    Keywords: Partial differential equations, Radial Basis Functions, Polyharmonic Splines, Robin boundary condition, RBF-FD}
  • Azam Noorafkan Zanjani, Saeid Abbasbandy *, Fahimeh Soltanian
    In this paper, the application of the Fifth-order Meshless Local Petrov-Galerkin Method in solving the linear partial differential-algebraic equations (PDAEs) was surveyed. The Gaussian quadrature points in the domain and on the boundary were determined as centers of local sub-domains. By governing the local weak form in each sub-domain, the compactly supported radial basis functions (CS-RBFs) approximation was used as the trial function and the Heaviside step function was considered as the test function. The proposed method was successfully utilized for solving linear PDAEs and the numerical results were obtained and compared with the exact solution to investigate the accuracy of the proposed method. The sensitivity to different parameters was analyzed and a comparison with the other methods was done.
    Keywords: Partial Differential Algebraic Equations, Meshless Local Petrow-Galerkin Method, Radial Basis Functions}
  • MohammadReza Yaghouti *, Farnaz Farshadmoghadam

    The radial basis functions (RBFs) meshless method has high accuracy for the interpolation of scattered data in high dimensions. Most of the RBFs depend on a parameter, called shape parameter which plays a significant role to specify the accuracy of the RBF method. In this paper, we present three algorithms to choose the optimal value of the shape parameter. These are based on Rippa’s theory to remove data points from the data set and results obtained by Fasshauer and Zhang for the iterative approximate moving least square (AMLS) method. Numerical experiments confirm stable solutions with high accuracy compared to other methods.

    Keywords: Radial basis functions, Shape Parameter, Leave-One-Out Cross Validation, Leave-Two-Out Cross Validation, Approximate Moving Least Squares}
  • Abolfazl Soltanpour Moghadam, Maryam Arabameri *, Mahdiar Barfeie
    This paper aims to advance the radial basis function method for solving space-time variable-order fractional partial differential equations. The fractional derivatives for time and space are considered in the Coimbra and the Riemann-Liouville sense, respectively. First, the time-variable fractional derivative is discretized through a finite difference approach. Then, the space-variable fractional derivative is approximated by radial basis functions. Also, we advance the Rippa algorithm to obtain a good value for the shape parameter of the radial basis functions. Results obtained from numerical experiments have been compared to the analytical solutions, which indicate high accuracy and efficiency for the proposed scheme.
    Keywords: Advection-dispersion equation, radial basis functions, Coimbra fractional derivative, Riemann-Liouville fractional derivative}
  • Ashraf Hajiollow, Fatemeh Zabihi *
    ‎‎In this paper‎, ‎the radial basis functions (RBFs) method is applied to solve the coupled Lane–Emden boundary value problems arising in catalytic diffusion reactions‎. ‎First‎, ‎we multiply the equations by x to overcome the difficulties of the singularity at the origin‎. ‎Then‎, ‎the Kansa collocation method based on radial basis functions is used to approximate the unknown functions‎. ‎By this technique‎, ‎the problem with boundary conditions is reduced to a system of algebraic equations‎. ‎We solve this system and compare the maximal residual error with the results previously‎, ‎which show the presented method is efficient and produces very accurate and rapidly convergent numerical results in considerably low computational effort and easy implementation‎.
    Keywords: Coupled Lane–Emden equations‎, ‎Boundary value problems‎, ‎Meshless methods‎, ‎Radial basis functions‎, ‎Residual error}
  • Mehran Nemati, Mahmoud Shafiee *, Hamideh Ebrahimi
    The radial basis functions (RBFs) methods were first developed by Kansa to approximate partial differential equations (PDEs). The RBFs method is being truly meshfree becomes quite appealing, owing to the presence of distance function, straight-forward implementation, and ease of programming in higher dimensions. Another considerable advantage is the presence of a tunable free shape parameter, contained in most of the RBFs that control the accuracy of the RBFs method. Here, the solution of the two-dimensional system of nonlinear partial differential equations is examined numerically by a Global Radial Basis Functions Collocation Method (GRBFCM). It can work on a set of random or uniform nodes with no need for element connectivity of input data. For the timedependent partial differential equations, a system of ordinary differential equations (ODEs) is derived from this scheme. Like some other numerical methods, a comparison between numerical results with analytical solutions is implemented confirming the efficiency, accuracy, and simple performance of the suggested method.
    Keywords: Global meshless method, Radial basis functions, Method of lines, partial differential equations}
  • Mehrdokht Khani, Abdolsadeh Neisy *
    In this paper, we first present a nonlinear structural model for pricing mortgage-backed securities. These derivatives are considered to be the primary cause of the 2008 financial crisis that was raised in the United States. We focus our work on pass-through mortgages, which pay both the principal and interest to the investors. We begin our work by introducing the factors that affect the market of mortgage-backed securities. Then, by applying some assumptions and conditions to the parameters of the initial model, and without the loss of generality, we show that this model can be greatly simplified. We focus our attention on how the change in interest rates can affect the value of mortgage-backed securities. Various numerical methods can be used to solve the reduced model that is achieved. We ‎adapt the mesh-less method of radial basis functions to solve the reduced model. The numerical results indicate that the method that we have used can capture the market trends in a specific interval.
    Keywords: Mortgage-backed ‎ security, ‎ Reduced ‎ modeling, ‎ Radial ‎ Basis ‎ Functions, Prepayment, financial crisis}
  • Siamak Banei, Kamal Shanazari *
    ‎‎‎‎‎In this paper, we present a numerical technique to deal with the one-dimensional forward-backward heat equations. First, the physical domain is divided into two non-overlapping subdomains resulting in two separate forward and backward subproblems, and then a meshless method based on multiquadric radial basis functions is employed to treat the spatial variables in each subproblem using the Kansa’s method. We use a time discretization scheme to approximate the time derivative by the forward and backward finite difference formulas. In order to have adequate boundary conditions for each subproblem, an initial approximate solution is assumed on the interface boundary, and the solution is improved by solving the subproblems in an iterative way. The numerical results show that the proposed method is very useful and computationally efficient in comparison with the previous works.
    Keywords: Forward-backward heat equation, Non-overlapping domain decomposition, Radial basis functions, Meshless methods}
  • Behnam Sepehrian *, Zahra Shamohammadi
    In this study, a radial basis functions (RBFs) method for solving nonlinear timeand space-fractional Fokker-Planck equation is presented. The time-fractional derivative is of the Caputo type, and the space-fractional derivatives are considered in the sense of Caputo or Riemann-Liouville. The Caputo and Riemann-Liouville fractional derivatives of RBFs are computed and utilized for approximating the spatial fractional derivatives of the unknown function. Also, in each time step, the time-fractional derivative is approximated by the high order formulas introduced in [6], and then a collocation method is applied. The centers of RBFs are chosen as suitable collocation points. Thus, in each time step, the computations of fractional Fokker-Planck equation are reduced to a nonlinear system of algebraic equations. Several numerical examples are included to demonstrate the applicability, accuracy, and stability of the method. Numerical experiments show that the experimental order of convergence is 4 − α where α is the order of time derivative.
    Keywords: Fokker-Planck equation, Fractional derivative, Newton method, Radial basis functions}
  • سید محمود ضابط زاده*، هادی روحانی قهساره

    معادله دیفرانسیلی کابل از اساسی ترین مدل های ریاضی در علوم عصب شناسی است که توصیف کننده پدیده انتشار الکترونی یون ها در شبکه اعصاب است. یافته های جدید نشان می دهد که معادله استاندارد کابل برای توصیف دقیق این پدیده انتشار دارای برخی نواقص است. از این رو، اخیرا مدل های ریاضی ارتقاء یافته توصیف کننده فرآیند، مبتنی بر نظریه حسابان کسری ارایه شده است. در این تحقیق، معادله دیفرانسیل با مشتقات کسری دوبعدی کابل غیرخطی به عنوان یک مدل جدید در دینامیک عصب ها، به طور عددی بررسی می شود. یک روش محاسباتی کارا و قدرتمند که ترکیبی از روش های ادغام زمانی و روش بدون شبکه مبتنی بر شکل ضعیف موضعی معادله حاکم است، برای حل عددی مدل پیاده سازی و اجرا شده است. برای این منظور ابتدا یک طرح تفاضلاتی ضمنی با مرتبه دقت دو برای گسسته سازی مدل در جهت زمان ارایه شده است. سپس یک روش عددی بدون شبکه مبتنی بر ایده روش پتروف-گالرکین موضعی برای گسسته سازی کلی مسئله استفاده شده است. روش ترکیبی پیشنهادی برای حل تقریبی سه مثال اجرا شده است. نتایج عددی حاصل ارایه شده توسط جدول ها و برخی شکل ها کارآیی و دقت زیاد روش را نشان می دهد.

    کلید واژگان: معادله کابل غیرخطی, معادله دیفرانسیل با مشتقات کسری, روش درونیابی نقطه ای شعاعی, روش بدون شبکه پتروف - گالرکین موضعی, آنالیز پایداری}
    Sayyed Mahmood Zabetzadeh*, Hadi Rohani Ghehsareh

    The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensional time fractional nonlinear cable equation as an improved mathematical model in neuronal dynamics, is investigated numerically. An efficient and powerful computational technique based on the combination of time integration scheme and local weak form meshfree method has been formulated and implemented to solve the underlying problem. An implicit difference scheme with second order accuracy is used to discretize the model in the temporal direction. Then a meshless method based on the local Petrov-Galerkin technique is employed to fully discretize the model. The proposed numerical technique is performed to approximate the solutions of three examples. Presented results through the Tables and figures confirm the high efficiency and accuracy of the method.

    Keywords: Nonlinear Cable equation, Fractional differential equation, Radial basis functions, Weak form, Meshless local radial point interpolation method}
  • Fatemeh Alsadat Aghaei Meybodi, Mohammad Hossein Heydari, Farid Mohammad Maalek Ghaini

    In this investigation, we solve the Caputo's fractional parabolic partial integro-differential equations (FPPI-DEs) by Gaussian-radial basis functions (G-RBFs) method. The main idea for solving these equations is based on RBF which also provides approaches to higher dimensional spaces.In the suggested method, FPPI-DEs are reduced to nonlinear algebraic systems. We propose to apply the collocation scheme using G-RBFs to approximate the solutions of FPPI-DEs. Error analysis of the proposed method is investigated. Numerical examples are provided to show the convenience of the numerical schemes based on the G-RBFs. The results reveal that the method is very efficient and convenient for solving such equations.

    Keywords: Fractional parabolic partial integro-differential equations, Radial basis functions, Collocation method, Quadrature methods}
  • Kamal Rashedi *, Akbar Hashemi, Maryam Zarhoun
    In this paper, we propose a meshless regularization technique for solving an optimal shape design problem (OSD) which consists of constructing the optimal configuration of a conducting body subject to given boundary conditions to minimize a certain objective function. This problem also can be seen as the problem of building a support for a membrane such that its deflection is as close as possible to 1 in the subset D of the domain. We propose a numerical technique based on the combination of the method of fundamental solutions and application of the Tikhonov’s regularization method to obtain stable solution. Numerical experiments while solving several test examples are included to show the applicability of the proposed method for obtaining the satisfactory results.
    Keywords: Elliptic equation, Optimal shape, Method of fundamental solutions, Tikhonov regularization, Radial basis functions}
  • Parisa Rahimkhani, Yadollah Ordokhani *

    This paper presents an approximate method to solve a class of fractional partial differential equations (FPDEs). First, we introduce   radial basis functions (RBFs) combined with wavelets.  Next, we obtain fractional integral operator (FIO) of wavelets-radial basis functions (W-RBFs) directly.  In the next step, the W-RBFs and their FIO  are used to transform the problem under consideration into a  system of algebraic equations, which can be simply solved to achieve the solution of the problem.   Finally, some numerical examples are presented to illustrate the efficiency and accuracy of the method.

    Keywords: Fractional partial differential equations, radial basis functions, Legendre wavelets, numerical method, fractional integral operator}
  • M. Nili Ahmadabadi *

    We propose an efficient mesh-less method for functional integral equations. Its convergence analysis has been provided. It is tested via a few numerical experiments which show the efficiency and applicability of the proposed method. Attractive numerical results have been obtained.

    Keywords: Functional integral equations, mesh-less method, Radial basis functions, collocation method}
  • ف. هادی نژاد*، س. کاظم

    در این مقاله تلاش می شود که بهترین نقاط مرکزی توابع پایه شعاعی را با استفاده از تکنیک های تصمیم گیری چند معیاره ‎(MCDM)‎ انتخاب کنیم. دو روش مبتنی بر توابع پایه ای شعاعی برای حل معادلات دیفرانسیل با مشتقات جزیی مورد استفاده قرار می گیرد. روش اول مبتنی بر روش کانسا و روش دوم مبتنی بر درون یابی هرمیتی می باشند. علاوه بر این، با انتخاب پنج مجموعه از نقاط مرکزی: کارتزین، هم فاصله، چبیشف، لژاندر و لژاندر گاوس لوباتو به عنوان گزینه های تحقیق و متغیرهای: خطا، عدد حالت ماتریس درون یاب و زمان اجرا به عنوان معیارهای تاثیرگذار، گزینه ها با کمک تکنیک پرامیتی رتبه بندی گردیدند. در نهایت بهترین نقاط مرکزی بر اساس رتبه بدست آمده انتخاب گردید. این رتبه بندی نشان می دهد که روش درون یابی هرمیتی با استفاده از نقاط غیر یکنواخت به عنوان نقاط مرکزی مناسب تر از روش کانسا با هر نقطه مرکزی است.

    کلید واژگان: تصمیم گیری چند معیاره, توابع مرکزی شعاعی, پر امیتی, درون یابیهرمیت, انتخاب بهینه}
    Farhad Hadinejad *, Saeed Kazem

    In this paper‎, ‎we decide to select the best center nodes‎ ‎of radial basis functions by applying the Multiple Criteria Decision‎ ‎Making (MCDM) techniques‎. ‎Two methods based on radial basis‎ ‎functions to approximate the solution of partial differential‎ ‎equation by using collocation method are applied‎. ‎The first is based‎ ‎on the Kansa's approach‎, ‎and the second is based on the Hermite‎ ‎interpolation‎. ‎In addition‎, ‎by choosing five sets of center nodes‎: ‎Uniform grid‎, ‎Cartesian‎, ‎Chebyshev‎, ‎Legendre and‎ ‎Legendre-Gauss-Lobato (LGL) as alternatives and achieving the error‎, ‎the condition number of interpolation matrix and memory time as‎ ‎criteria‎, ‎rating of cases with the help of PROMETHEE technique is‎ ‎obtained‎. ‎In the end‎, ‎the best center nodes and method is selected‎ ‎according to the rankings‎. ‎This ranking shows that Hermite‎ ‎interpolation by using non-uniform nodes as center nodes is more‎ ‎suitable than Kansa's approach with each center node.

    Keywords: Multiple Criteria Decision Making‎, ‎Radial basis‎ ‎functions‎, ‎PROMETHEE‎, ‎Hermite interpolation‎, ‎Optimal selecting}
  • M. Emamjomeh*, S. Abbasbandy, D. Rostamy

    We propose a new approach for solving nonlinear Klein–Gordon and sine-Gordon equations based on radial basis function-pseudospectralmethod (RBF-PS). The proposed numerical method is based on quasiinterpolation of radial basis function differentiation matrices for thediscretization of spatial derivatives combined with Runge–Kutta time stepping method in order to deal with the temporal part of the problem.The method does not require any linearization technique; in addition, a new technique is introduced to force approximations to satisfy exactlythe boundary conditions. The introduced scheme is tested for a number of one- and two-dimensional nonlinear problems. Numerical results andcomparisons with reported results in the literature are given to validate the presented method, and the reported results show the applicabilityand versatility of the proposed method.

    Keywords: Meshless method, Pseudospectral method, Radial basis functions, Klein–Gordon equation, sine-Gordon equation, Runge–Kutta fourth order method, Multiquadric quasi-interpolation}
  • Ahmad Golbabai, Ahmad Saeedi

    This paper establishes a direct method for solving variational problems via a set of Radial basis functions (RBFs) with Gauss-Chebyshev collocation centers. The method consist of reducing a variational problem into a mathematical programming problem. The authors use some optimization techniques to solve the reduced problem. Accuracy and stability of the multiquadric, Gaussian and inverse multiquadric RBF is examined and compared by some numerical experiments.

    Keywords: Radial basis functions, direct method, variational problems, Gauss, Chebyshev centers}
  • Jafar Biazar *, MohammadAli Asadi

    In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integration by using initial condi-tions. This leads to fewer computations rather than the standard FIM. Also, a product Simpson method is used to overcome the singularity included in the definition of fractional derivatives, and an integration matrix is obtained. Some numerical examples are provided to show the efficiency of the method. In addition, a comparison is made between the proposed method and the previous ones.

    Keywords: Time-fractional convection-diffusion equation, Radial basis functions, Finite integration method, Product Simpson integration method}
  • فریبا تخت آبنوس، احمد شیرزادی *
    در این مقاله یک روش بدون شبکه ی محلی بر پایه ی فرم قوی مساله، برای حل معادله ی دو بعدی وابسته به زمان شرودینگر ارائه شده است. ابتدا متغیر زمان با استفاده از یک روش تفاضلات متناهی مناسب گسسته سازی شده است. سپس، در معادلات بیضوی حاصل، متغیر مکانی با استفاده از یک روش توابع پایه ای شعاعی محلی که در آن عملگر معادله ی دیفرانسیل جزئی نیز در ماتریس های محلی اعمال شده، گسسته سازی شده است. در روش ارائه شده، برخلاف روش های هم محلی سراسری، با تقسیم دامنه ی هم محلی سراسری به تعداد زیادی زیر ناحیه های محلی، پایداری روش به شدت افزایش می یابد. به علاوه، به دلیل استفاده از فرم قوی و روش هم محلی، که نیاز به محاسبه ی انتگرال ندارد، و هم چنین به دلیل این که در عملیات ماتریسی، ماتریس ها با بعد کوچک هستند، هزینه ی محاسبات کاهش می یابد. برای خطی سازی معادلات غیر خطی، یک روش تکراری معرفی شده است. دو مثال خطی و دو مثال غیر خطی با جواب تحلیلی معلوم و یک مثال غیرخطی با جواب نامعین و شرایط مرزی متناوب توسط این روش آزموده شده اند و نتایج عددی نشان دهنده ی دقت بالا و کارایی روش می باشد.
    کلید واژگان: توابع پایه ای شعاعی, معادله ی شرودینگر, روش های بدون شبکه ی محلی, روش هم محلی متناهی, روش تفاضلات متناهی}
    Fariba Takhtabnoos Dr, Ahmad Shirzadi *
    This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Despite the global collocation approaches, dividing the global collocation domain into many local subdomains, the stability of the method increases. Furthermore, because of the use of strong form equation and collocation approach, which does not need integration, and since in the matrix operations the matrices are of small size, computational cost decreases. An iterative approach is proposed to deal with the nonlinear term. Two linear and two nonlinear test problems with known exact solutions are considered and then, the simulation to a nonlinear problem with unknown solution and periodic boundary conditions is also presented and the results reveal that the method is efficient.
    Keywords: Local meshless methods, Radial Basis Functions, Schr¨odinger equation, Finite collocation method, Finite differences.}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال