به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

multiphase flow

در نشریات گروه مکانیک
تکرار جستجوی کلیدواژه multiphase flow در نشریات گروه فنی و مهندسی
  • K. Raj, P. R. L. Raj *
    During the chill-down procedure for a space application system, a multiphase flow of extremely cold propellants will undoubtedly occur in the feed lines. Due to flow instability and varying cooling rates, this cooling technique produces dynamic changes that are challenging to control. Over the past few decades, research has extensively examined the multiphase behaviour of various cryogens, such as liquid nitrogen, liquid hydrogen, and liquid oxygen, while few studies focus on liquid methane. This study addresses this gap by investigating the hydrodynamic and thermodynamic characteristics of LCH₄-VCH₄ multiphase flow in a vertical cryogenic pipe using a well-validated, three-dimensional Volume of Fluid (VOF) model. Further, the current study employs an Eulerian flow scheme coupled with an energy equation to accurately capture the multiphase flow dynamics of liquid methane across various inlet velocities and temperatures. The volume fractions are used to investigate the flow pattern, and the interaction between the two phases and the two-phase flow structure is investigated using velocity profiles and phase distribution. Further, the bulk mean and near-wall temperature results were analysed to understand the temperature variation inside the pipe. Increased inlet temperatures at constant velocities enhance vapour volume fractions, while higher velocities reduce vapour generation, leading to decreased bulk mean temperature due to reduced heat transfer. However, a significant rise in vapour flow rates occurs at elevated temperatures with constant velocity. The volume fraction results show the formation of bubble, annular, and slug flow patterns in the flow regime.
    Keywords: Multiphase Flow, VOF, Heat Transfer, Cryogenics, Flow Identification
  • H. Jin, H. Xiang, M. Wang, R. Wen, X. Liu, C. Wang *
    High-pressure black water angle valves are essential equipment of black water flash treatment systems in the coal gasification process, and they usually suffer from a high risk of erosion wear failure. In this study, computational fluid dynamics (CFD), combined with the discrete particle method (DPM) and the volume of fluid (VOF) method, was used to study the flow characteristics and erosion wear phenomenon in high-pressure black water angle valves under different valve cavity radii and opening angles. In particular, a new parameter, the drift index, was introduced to analyze the bias flow phenomenon in the throttling zone. With the increase in valve cavity radius, the drift index first decreases and then increases, and the influence of the valve cavity radius gradually weakens with the increase in the valve opening. It was found that, with the increase in valve cavity radius, the average erosion wear rate of the valve body decreases first and then increases. When the valve cavity radius was 132 mm, the average erosion wear rate of the valve body was the smallest. Therefore, the optimization of the valve cavity radius selection value can reduce the erosion wear damage of the high-pressure black water angle valve and increase its operational dependability.
    Keywords: DPM, Valve Cavity Radius, Multiphase Flow, Drift Index, Erosion Wear
  • K. Gaurav, N. Venkatesh, A. Karn *
    Modern underwater warfare necessitates the development of high-speed supercavitating torpedoes. Achieving supercavitation involves integrating a cavitator at the torpedo's front, making cavitator design a critical research area. The present study simulated supercavity formation by cavitators of various shapes attached to a heavyweight torpedo. The study involves simulations of thirteen cavitator designs with various geometrical configurations at different cavitation numbers. The simulations employ the VOF multiphase model along with the Schnerr and Sauer cavitation model to analyze supercavitation hydrodynamics. The study examines the supercavity geometry and drag characteristics for individual cavitator designs. The results reveal a significant reduction in skin friction drag by a majority of cavitators. Notably, a disc cavitator at a cavitation number of 0.09 demonstrates a remarkable 92% reduction in the coefficient of skin friction drag. However, the overall drag reduces when incorporating a cavitator, but it introduces additional pressure drag. The study found that the cavitators generating larger supercavities also yield higher pressure drag. Therefore, the supercavity should just envelop the entire torpedo, as excessively small supercavities amplify skin friction drag, while overly large ones elevate pressure drag. Ultimately, the study concludes that selecting the ideal cavitator entails a comprehensive evaluation of factors such as supercavity and torpedo geometry, reductions in skin friction drag and increments in pressure drag.
    Keywords: Multiphase Flow, Supercavitation Simulation, Flow Control, Drag Reduction, Under-Water Vehicle, SS Cavitation Model, Shape Optimization
  • Sara Mashak, Mohammadkazem Moayyedi *, Ramin Kamali Moghadam

    This study investigates the evolution of bubble shape within a square area filled with blood. The accuracy of the numerical solution is validated using Laplace's problem and the free-rising of the bubble. The analysis is conducted in two dimensions and in a transient manner. The effects of ultrasound waves are applied as a function of pressure on the boundaries of the solution domain. Results show that applying a linearly increasing pressure on the computational domain boundaries causes a reduction in bubble radius. Furthermore, it is observed that assuming the air inside the bubble behaves as an ideal gas, leads to more pronounced changes in bubble radius compared to constant density assumptions. Oscillatory pressure distributions on the external boundaries result in corresponding oscillations in bubble radius. These fluctuations in bubble size could be utilized to exert tension on the walls of blood clots, ultimately aiding in their dissolution. The most intensive bubble size fluctuations occur in the frequency of 1 (MHz). Additionally, the disproportionate changes in bubble radius with pressure variations are attributed to the hysteresis phenomenon.

    Keywords: Blood Flow, Bubble Radius Changes, Ultrasound Waves, Numerical Modeling, Multiphase Flow
  • اشکان بروجردیان، حسین نعمتی*، احسان سلاحی

    بر اساس شواهد تجربی، وجود ترموکوپل در مواد تغییر فاز دهنده جامد بر نتایج تاثیر می گذارد و رژیم ذوب را از ذوب نامقید به ذوب مقید تغییر می دهد. در این مطالعه، روش جدیدی برای اندازه گیری مستقیم کسر جرمی مایع مواد تغییر فاز دهنده در طول ذوب بر اساس تکنیک پردازش تصویر پیشنهاد شد. در این روش در زمان های متوالی تصاویری از فرآیند ذوب در شرایط کنترل شده تهیه می شود. با انجام تکنیک های پردازش تصویر، مرز هسته جامد تعیین می شود و مساحت ناحیه محصور محاسبه و بر سطح اولیه فاز جامد تقسیم می شود. این روش برای ذوب نامقید پارافین در داخل یک سیلندر افقی اعمال شد. مساله نیز به صورت عددی با روش چند فازی (VOF) شبیه سازی شد و تغییر در حجم کل پارافین (مجموع حجم فازهای جامد و مایع) به دلیل تفاوت بین چگالی جامد و مایع لحاظ گردید. تطابق خوبی بین نتایج عددی و تجربی مشاهده شد. شکل و اندازه های هسته جامد در تصاویر تجربی و نتایج عددی در زمان های مختلف به خوبی مطابقت دارند.

    کلید واژگان: مواد تغییر فاز دهنده، پردازش تصویر، جریان چند فازی، اندازه گیری بدون تماس، ذوب نامقید، ذوب مقید
    A. Brojerdian, H. Nemati*, Ehsan Selahi

    Based on experimental evidence, the presence of thermocouples in solid phase change materials affects the results and changes the melting regime from unconstrained melting to constrained melting. In this study, a new method for direct measurement of liquid mass fraction of phase change materials during melting was proposed based on the image processing technique. In this method, images of the melting process are prepared in controlled conditions at successive times. By performing image processing techniques, the boundary of the solid core is determined and the enclosed surface area is calculated and divided by the initial surface of the solid phase. This method was applied to unconfined paraffin melting inside a horizontal cylinder. The problem was also numerically simulated by the multi-phase method (VOF) and the change in the total volume of paraffin (total volume of solid and liquid phases) due to the difference between solid and liquid density was taken into account. A good agreement between numerical and experimental results was observed. The shape and sizes of the solid core in the experimental images and the numerical results at different times match well.

    Keywords: Phase Change Materials, Image Processing Technique, Multiphase Flow, Non-Contact Measurement, Unconstrainedmelting, Constrained Melting
  • A. Erdoğan *
    A vital process for converting heavy petroleum productions is Fluid Catalytic Cracking (FCC). As a major source of CO2 emissions, the regenerator reactor in the FCC unit accounts for about 20-35% of the refinery's total emissions. A common method for reducing CO2 emissions from the FCC regenerator is oxy-combustion, which has different advantages with regard to reducing energy penalties and associated costs. In this study, a computational fluid dynamic (CFD) study was used to examine the hydrodynamic characteristics of solid particles and gas inside the FCC regenerator, allowing CO2 to be captured more efficiently. Utilizing Ansys Fluent platform, the Eulerian-Eulerian model was applied with granular flow kinetic theory. In the simulations, different mesh sizes were tested, and the hydrodynamics of the oxy-combustion regenerator were evaluated by adjusting CO2 flow rates to achieve similar fluidization behaviors. The CFD results indicated that the conventional drag model accurately predicted the density phases within the bed. In oxy-combustion, CO2, due to its density, naturally creates a smaller dense phase compared to air-combustion. Moreover, optimizing the fluidizing gas velocities resulted in enhanced particle mixing, resulting in a distributed flow with vortices within the dense phases due to a reduction in gas velocity. To improve the environmental performance of the FCC unit, this research provides valuable insight into the hydrodynamics of solid catalysts used in the oxy-combustion process.
    Keywords: Oxy-combustion, Computational fluid Dynamic, Hydrodynamic, Multiphase flow, Regenerator
  • H. J. Zhao, D. Zhang, X. F. Lv *, L. L. Song, J. W. Li, F. Chen, X. Q. Xie
    Oil spill accidents in damaged submarine-buried pipelines cause tremendous economic losses and serious environmental pollution. The accurate prediction of oil spills from subsea pipelines is important for emergency response. In this study, the volume-of-fluid model, realizable k–ε turbulence model, and porous-medium model were employed to describe the process of an oil spill from a submarine pipeline to the sea surface. The effects of seawater density, seawater velocity, and pipeline buried depth on the transverse diffusion distance of crude oil and the time at which crude oil reaches the sea surface were obtained through numerical calculations. The calculation results show that, with a decrease in seawater density and an increase in seawater velocity and pipeline depth, the diffusion rate of crude oil decreases significantly, the maximum transverse diffusion distance increases and crude oil takes a long time to reach the sea surface. In particular, compared with a sea density of 1045 kg/m3, the transverse distance of a sea density of 1025 kg/m3 is increased by 0.091 m. When the seawater velocity is greater than 1.5 m/s, the diffusion of crude oil in seawater is significantly affected, the seawater velocity increases to 0.35 m/s, and the transverse diffusion distance of oil to the sea surface increases to 12.693 m. When the buried depth of the pipeline reaches 0.7 and 1.3 m compared to 0.1 m, the diffusion widths of crude oil in sea mud rise by 20% and 32.5%, respectively. The time required for crude oil to reach the sea surface and the transverse diffusion distance of crude oil migrating to the sea surface were analyzed using multiple regression, and the fitting formulas were obtained. The results provide theoretical support for accurately predicting the leakage range of submarine-buried pipelines and provide valuable guidance for submarine-buried pipeline leakage accident treatment schemes.
    Keywords: Submarine buried pipeline, Crude oil leakage, Oil spill, Numerical simulation, Multiphase flow
  • Jorge Mario Ceballos Zuluaga, Cesar Augusto Isaza Merino, Iván David Patiño Arcila *, Andrés David Morales Rojas
    The growing demand for energy resources highlights the need to optimize traditional energy transformation systems. Pelton-type turbines, which are extensively used in micro-generation systems, can be designed using different methodologies, however, no consensus has been reached on which methodology guarantees greater efficiency. This work aims to compare the fluid-dynamic behavior at the first-time instants of Pelton turbines for micro-generation dimensioned by three different methodologies, namely, OLADE, Nechleba, and Thake, evaluating their capacity to overcome the initial torque. The results show that OLADE methodology leads to the best fluid-dynamic performance, whereas Nechleba fails to overcome the prescribed torque. In the Thake methodology, the impact of water on the back face of buckets and the formation of reverse pressure gradients can counter the turbine rotation.
    Keywords: Computational fluid dynamics, Dynamic mesh model, Multiphase flow, Pelton Turbines, Buckets dimensioning methodologies, ‎Initial torque‎
  • B. Hao, Y. G. Lu *, H. Dai
    The formation of supercavitation after a high-speed projectile enters water has a decisive impact on the underwater ballistic and penetration of the projectile. In this study, Ansysfluent19.0 simulation software is used to study water entry of a chosen projectile at velocities of 300, 400, 500, and 600 m/s. The underwater cavitation characteristics, trajectories, and flow-field characteristics are analyzed for a 5.8-mm caliber conical flat head projectile, as well as for t wo other projectiles of the same caliber and different head shapes — conical cone head and elliptical flat head — entering water vertically at the same velocities. The attenuation rate of water entry velocity increases with the increase of velocity. Within first 3ms, the velocity attenuation rate of the conical flat-head projectile with a water entry velocity of 600m / s is 55.6 %, while the velocity attenuation rate of the projectile with a water entry velocity of 300m / s is only 16.3 % within 3ms. Among the head shapes considered, the conical flat head projectile is the most stable for vertical water entry. The stability of an elliptical flat head projectile is worse, and the trajectory stability of a conical cone head projectile is still worse
    Keywords: Water-entry velocity, Supercavitation, Cavity shape, high- speed projectile, Multiphase flow
  • S. Aboudaoud *, S. Touzani, S. Abderafi, A. Cheddadi
    The hydrodynamic behaviour of air-glass beads bubbling fluidized bed reactor containing spherical glass beads is numerically studied, using OpenFoam v7 CFD software. Both Gidaspow and Syamlal-O'Brien drag models are used to calculate momentum exchange coefficients. Simulation predictions of pressure loss, bed expansion rate, and air volume fraction parameters were compared and validated using data, existing in the literature obtained experimentally and performed by other numerical softwares. Pressure loss and rate of bed expansion were calculated with relative root mean square error (RMSE) equal to 0.65 and 0.095 respectively; Syamlal-O'Brien model is considered more accurate than Gidaspow model. Hence, numerical model reliability developed on OpenFoam was also proved. The hydrodynamic aspect study of the fluidized bed reactor was then performed, to analyse the impact of inlet air velocity (U) on particles motion. It was revealed that with U increment, air and glass beads axial velocities increase in the reactor centre and decrease in the sidewalls. Thus, a greater particle bed expansion is induced and the solid particles accumulated highly on the reactor sidewalls. In general, with the increase of U, the solid volume fraction decreases from 0.63 to 0.58 observed at 0.065 m/s and 0.51 m/s, respectively.
    Keywords: CFD modelling, Eulerian-Eulerian approach, Fluidized bed reactor, Hydrodynamic, Multiphase flow, OpenFOAM
  • M. H. Ramezani, R. Maddahian *, M. M. Noroozi, M. R. Ansari
    The present research aims to investigate the two-phase air/water flow in a vertical pipe using an electrical resistance sensor and a high-speed camera. An electrical resistance sensor is designed and embedded in the inner wall of the tube. A flow pattern map is drawn at the height of 270 cm from the testbed inlet for 320 different phase velocities using a high-speed camera. By measuring the output voltage of the electrical resistance sensor and using the Maxwell relation, the volume fraction in bubbly and slug flow regimes are calculated for different phase velocities. The volume fraction values detected from the output signal of the electrical resistance sensor are compared with the results obtained from the high-speed camera images. The width of the output signal from the electrical resistance sensor indicates the length of the Taylor bubble. The output signal width is compared to the obtained Taylor bubble length from high-speed camera images, for several different velocities of the phases. It is noticed that at a constant velocity of the phases, the output signal width from the sensor is linearly related to the length of the Taylor bubble. The variations of the output signal width are plotted in terms of the ratio of the Taylor bubble length to the summation of air and water superficial velocities. By linear fitting of the available data, a novel equation is presented to calculate the Taylor bubble length in terms of the signal output from the electrical resistance sensor and the total superficial velocity of the phases.
    Keywords: Multiphase flow, Transient flow regime, Vertical tube, Electrical resistance tomography, Taylor bubble length, Electrical resistance sensor
  • H. Wang *, Q. F. Ying, E. Lichtfouse, C. G. Huang
    Gradient metal foam is an advanced heat transfer material that decreases resistance to bubble escape and enhances the transfer of boiling heat. In this study, boiling heat transfer and bubble behavior were studied in an experimental set-up with copper foam bilayers configurated either in positive or inverse gradients, utilizing deionized water as working fluid. Positive gradient refers to arranging metal foam layers with high pore density at the bottom, above the heat source, and low pore density on the top. Results show that the heat transfer is higher for gradient metal foam surfaces, of 6.14×105 W/m2, versus a uniform metal foam surface, of 3.94×105 W/m2. For the positive gradient configuration, boiling heat transfer performance first increased with the pore density, then decreased when the pore density was higher than 60 pores per inch (PPI). By contrast, for the inverse gradient, the heat transfer performance was nearly constant with increasing pore density. At the low pore density, the inverse gradient performed better than the positive gradient during the whole boiling process. At high pore density, the positive gradient structure performed better in heat transfer at the early boiling stage. Three main types of bubble escape were observed: For the positive gradient bilayer, the bubbles moved up or down without lateral interference. In contrast, for inverse gradient, the bubbles mostly escape from the sides, which is easy to induce bubble merging. The inverse gradient surface generates larger bubbles, while the positive gradient surface produces a higher frequency of bubble detachment. Accordingly, two liquid replenishment models are proposed: for the positive gradient, external liquid replenishes from the side into the copper foam, while for inverse gradient, the liquid is mainly replenished from the top.
    Keywords: Gradient copper foam, Liquid replenishment, Bubble behavior, Heat transfer enhancement, Multiphase flow
  • یاسر جعفری، محمد طیبی رهنی، محمدرضا سلیمی، رینهارد میلر

    در مقاله حاضر روش های شبیه سازی جریان چندفازی در حضور سورفکتانت ها  در 3 دسته مبتنی بر ناویر-استوکس،  تابع توزیع و مبتنی بر نیروهای بین مولکولی طبقه بندی و هر یک جداگانه تشریح شده است. روش های مبتنی بر ناویر-استوکس در دو دسته روش های ردیابی سطح مشترک و روش های صید سطح مشترک قرار می گیرند. روش های مبتنی بر نیروهای بین مولکولی به عنوان روش های ذره مبنا و با دیدگاه لاگرانژی در برخورد با میدان جریان عمل می کنند. مدل های پرکاربرد در روش های مبتنی بر تابع توزیع  نیز در انتها معرفی شده اند. گستره وسیعی از روش های عددی انتخاب های زیادی را پیش روی پژوهشگران قرار داده است. شناخت و درک قابلیت ها و جزییات این روش ها کمک خواهد کرد تا با توجه به امکانات سخت افزاری، مناسب ترین روش عددی انتخاب و نتایج قابل اعتماد و مقرون به صرفه ای حاصل شود.

    کلید واژگان: سورفکتانت ها، جریان سیالات چندفازی، ناویر-استوکس، روش دینامیکی مولکولی، روش شبکه بولتزمن
    Yaser Jafari, MohammadTaeibi Rahni, MohammadReza Salimi, Reinhard Miller

    In this article, the simulation methods of multiphase flow in the presence of surfactants are classified into 3 categories based on Navier-Stokes, distribution function, and based on intermolecular forces, and each one is described separately. Navier-Stokes-based methods fall into two categories: interface tracking methods and interface capture methods. Methods based on intermolecular forces act as particle-based methods with a Lagrangian perspective in dealing with the flow field. The widely used models in the methods based on the distribution function are also introduced at the end. A wide range of numerical methods has put many choices in front of researchers. Knowing and understanding the capabilities and details of these methods will help to select the most appropriate numerical method and obtain reliable and cost-effective results according to the hardware facilities.

    Keywords: Surfactants, Multiphase flow, Navier-Stokes, Molecular Dynamics Method, Lattice Boltzmann Method
  • یاسر جعفری، محمد طیبی رهنی، محمدرضا سلیمی*، رینهارد میلر

    در این مقاله مواد فعال سطحی (سورفکتانت ها) و تاثیر آن بر جریان سیالات چند فازی مورد مطالعه قرار گرفته است. ابتدا نحوه عملکرد سورفکتانت ها بیان شده است. بدین منظور، تعاریف تنش سطحی و نحوه تغییر آن در حضور سورفکتانت ها بررسی شده است. همچنین، فیزیک توزیع سورفکتانت ها در جریان چندفازی و جذب و دفع آن در سطح مشترک گزارش شده است. تغییرات فیزیکی سطح مشترک دوفاز به دلیل حضور سورفکتانت ها از طریق تعادل نیروها و تغییر در تنش سطحی و تعریف اثر مارانگونی بررسی شده است. انواع سورفکتانت ها و خواص آن ها بیان شده است. در نهایت کاربردهای مهم سورفکتانت ها در صنعت و زندگی روزمره با جزییات ذکر شده است. این بررسی نشان می دهد که سورفکتانت ها به عنوان یکی از عوامل موثر بر جریان چندفازی نیاز به مطالعه روز افزون دارد. شناخت بهتر این مواد می تواند در دستکاری و بهینه سازی کاربردهای دارای جریان سیال چندفازی بسیار مفید باشد.

    کلید واژگان: مواد فعال سطحی، سورفکتانت ها، جریان سیالات چندفازی، تنش سطحی، اثرات مارانگونی، انواع، کاربردها
    Yaser Jafari, Mohammad Taeibi Rahni, Mohammad Reza Salimi*, Reinhard Miller

    In this article, Surface Active Agents (Surfactants) and its effect on the Multiphase Flow have been studied. First, the functioning of surfactants has been explained. For this purpose, the definitions of surface tension and how it changes in the presence of surfactants have been investigated. Also, the physics of surfactant distribution in multiphase flow and its absorption and repulsion at the interface have been reported. The physical changes of the two-phase interface due to the presence of surfactants have been investigated through the balance of forces and the change in surface tension and the definition of the Marangoni effect. Types of surfactants and their properties are stated. Finally, the important applications of surfactants in industry and daily life are mentioned in detail. This review shows that surfactants as one of the effective factors on multiphase flow need to be studied more and more. A better understanding of these materials can be very useful in manipulating and optimizing multiphase flow applications. 

    Keywords: Surface active agents, Surfactants, Multiphase flow, Surface tension, Marangoni effects, Types, Applications
  • M. M. Noroozi, R. Maddahian *, M. H. Ramezani, M. R. Ansari
    The multiscale multiphase flow contains both small-scale (dispersed phase) and large-scale (continuous phase) structures. Standard interface-averaging multiphase models are appropriate for the simulation of flows including small-scale structures. Standard interface-resolving multiphase models are commonly used for the simulation of flow regimes containing large-scale structures. The accurate simulation of different regimes has a crucial role to investigate the physics of multiphase flows. To cover the inability of standard models to simulate multiscale multiphase flows, various generalized hybrid models have been developed. The present research aims to present an LES-like approach to identify the large-scale structures by comparing the equivalent diameter of structures and the averaging length scale. The main difference between the presented model and the models available in the literature is the independency of the model to the thresholds of the local volume fraction to recognize the flow regime. The switching criterion is set based on the cell size and the physical phenomena including the break-up and coalescence mechanisms. To assess the capabilities of the presented multiscale model, four different benchmark cases including the bubble column, the impinging jet, the dam break, and the Rayleigh-Taylor instability are investigated. The physical behavior of the flow is considered as a reference and compared with numerical results. It is demonstrated that the present multifluid model is capable to capture the physical characteristics of both dispersed and segregated flow regimes, and it is a forward step to develop a generalized multiscale hybrid multiphase model.
    Keywords: Multiphase flow, Computational multiphase fluid dynamics, Transient flow regime, Hybrid model, Multiscale model
  • حسن خالقی*، اعلی صدوقی

    در این مقاله به بررسی و مقایسه اثر پاشش اسپری تبخیری دو هیدروکربن رایج اکسیژن دار، به ترتیب اتانول از دسته الکل و استون،از دسته کتون در محیط گازی پرداخته شده است.به منظور حصول این هدف،فاز گازی با رویکرد اولری و قطرات فاز مایع به صورت لاگرانژی شبیه سازی شده اندواندرکنش بین دوفاز به صورت دوطرفه در نظر گرفته شده است.با توجه به نتایج حاصل شده،در مدت زمان مناسب پس از پاشش اسپری،درصد کلی تبخیر استون به مراتب بیشتر از اتانول است،اما در مدت زمانهای اولیه پاشش اسپری،هردوماده نرخ کلی تبخیر مشابهی داشته اند.همچنین هردوماده،ازمنظر طول نفوذ اسپری در محیط گازی،تقریبا پیشروی یکسانی داشته اندودارای خصوصیات رفتاری یکسانی هستند.همچنین به واسطه سرعت پاشش تقریبا یکسان، اثرات نزدیک به هم و یکسانی بر روی میدان های سرعت فاز گازی از خود برجای گذاشته اند. مقایسه میدان دمای فاز گازی برای پاشش اتانول و استون پس از گذشت زمان 1.5 پس از نشان می دهد که دمای محیط گازی پس از پاشش اتانول، به واسطه دمای تبخیر و همچنین گرمای نهان تبخیر بالاتر اتانول، به مراتب کمتر از دمای محیط پس از پاشش استون است. این امر به این دلیل است که اکثر جرم تبخیر شده از قطرات در دمای ثابت و برابر دمای تبخیر آن ها رخ می دهد و همچنین این که گرمای مورد نیاز تبخیر از محیط گازی تامین میشود.

    کلید واژگان: شبیه سازی اسپری، تبخیر، چندفازی، اولر-لاگرانژ، الکل ها
    Hassan Khaleghi *, Ala Sadooghi

    In this paper, the effect of evaporating sprays of Ethanol and Acetone injected into a cylindrical gaseous environment is numerically investigated. To make this investigation the Eulerian gas phase equations together with the Lagrangian liquid phase equations are solved assuming a two-way coupling between the two phases. According to the results, after a certain time from the start of injection, the overall percentage of total evaporation of acetone becomes significantly higher than ethanol, but at the early spraying time, both alcohols had similar overall evaporation rates. Also, in terms of spray tip penetration, they have almost the same amount of progress and more or less the same behaviour. Also due to the almost identical injection flow rate of the droplets, the effects on the velocity fields in the gas phase have been almost similar. The important point to compare is the gas phase temperature field for both sprays after 1.5 ms of injection. Due to the fact that most of the evaporation occurs when the particles reach boiling temperature and the fact that all the heat required for evaporation is taken from the gas phase, the ambient temperature becomes much lower in ethanol spray because ethanol’s boiling temperature and latent heat are both much higher than acetone.

    Keywords: Spray Modeling, Evaporation, Multiphase Flow, Eulerian-Lagrangian, Alcohol
  • T. C. L. Xavier, J. P. Ortiz

    Cavitation characteristics in Hollow-Jet valves and possible solutions were investigated in the present work. Three-dimensional numerical simulations – CFD (Computational Fluid Dynamics) were carried out in an unsteady state, considering homogenous multiphase flow, to identify the phenomenon in these components. Different turbulence and cavitation models were assessed to reach the best compromise of models. The results confirmed the occurrence of cavities with a mixture of vapor and liquid at the valve tip. The cavities are followed by a vortex generation near the same region. These vortices are the result of a high-velocity gradients, especially in the shear region of the discharge pipe wall, and they are followed by the detachment of the cavities from the valve tip. The methods and models were validated by a reproduction attempt of the results from a similar work on literature. Solutions to avoid or reduce cavitation were proposed and analyzed. Refurbishment and protective coatings against cavitation were particularly described, to envisage an economical solution to reuse the valves, avoiding their disposal or replacement.

    Keywords: CFD turbulence, Multiphase flow, Hollow-Jet, Dispersive valves, Coating
  • پژمان رستگار راجعونی، احمدرضا رحمتی*

    به منظور شبیه سازی جریان چندفازی در حضور میدان الکتریکی با استفاده از روش شبکه بولتزمن از سه تابع توزیع استفاده می شود که دو تابع توزیع به منظور استفاده از مدل مبتنی بر میدان فاز هی- چن- ژانگ و یک تابع توزیع به منظور حل میدان پتانسیل است. در ابتدا با استفاده از قانون لاپلاس و آزمون رهاسازی قطره توانایی برنامه کامپیوتری در اعمال کشش سطحی سنجیده شده است. نتایج حاصل نشان می دهد که برنامه عددی حاضر، قادر است نیروی کشش سطحی تنظیمی را به خوبی مدل کند. سپس با استفاده از شبیه سازی ناپایداری رایلی- تیلور توانایی برنامه کامپیوتری در اعمال نیروهای حجمی سنجیده شده است که نشان می دهد نتایج برنامه عددی نوشته شده با نتایج عددی موجود در مراجع همخوانی نزدیکی دارد. در این پژوهش برای اولین بار، اثر حضور میدان الکتریکی بر قطره غوطه ور در یک سیال دیگر و به علاوه حضور قطره در محیط متخلخل با استفاده از روش شبکه بولتزمن بررسی شده است. بدین منظور ابتدا حرکت قطره در اثر اختلاف پتانسیل در محیط های متخلخل و غیرمتخلخل بررسی شده است. پس از مدل سازی حرکت قطره در اثر اختلاف پتانسیل، دو میدان الکتریکی در جهت عکس یکدیگر به قطره وارد شده است تا تغییر شکل قطره بررسی شود. سپس با اعمال تست های مختلف نشان داده شده است که در یک اختلاف پتانسیل مشخص، قطره پس از تغییر شکل زیاد، تجزیه شده و به قطرات کوچک تر تقسیم می شود. تجزیه قطرات در یک امولسیون پیش مخلوط، تکنیکی رایج در تولید قطرات مونودیسپرس است. وجود قطرات مونودیسپرس در یک امولسیون باعث بهبود خواص فیزیکی از نظر کارشناسان علم پلیمر می شود

    کلید واژگان: روش شبکه بولتزمن، جریان چند فازی، میدان الکتریکی، تغییر شکل و تجزیه قطره، محیط متخلخل
    P. Rastegar Rajeouni, A. R. Rahmati*

    In order to simulate multiphase flow in the presence of dielectric current using the Lattice Boltzmann Method (LBM), three distribution functions are used, two of which for using the He-Chen-Zhang phase field model and one for solving the potential field. Initially, the ability of the code to apply surface tension was tested using the Laplace law and the drop release test. The results show that the present numerical program is capable of modeling well the regulated surface tension force. Then, the Rayleigh–Taylor instability simulation is used to evaluate the codechr('39')s ability in applying volume forces. The results by the developed numerical program are in good agreement with the numerical results in the references. In this study, for the first time, the effect of electric field on a droplet immersed in another fluid and the presence of droplet in a porous medium is investigated by LBM. For this purpose, first the droplet motion due to the potential difference in the porous and non-porous media is investigated. After modeling the droplet motion due to the potential difference, two electric fields areapplied to the droplet to reverse the droplet deformation. Through various tests, it is shown that at a given potential difference, the droplet breaks down after much deformation and is divided into smaller droplets. The decomposition of droplets in a pre-mixed emulsion is a common technique in the production of monodisperse droplets. The presence of monodisperse droplets in an emulsion improves the physical properties of polymer science experts.

    Keywords: Lattice Boltzmann Method, Multiphase Flow, Electric Field, Droplet Deformation, break-up, Porous Media
  • R. A. Dafsari, R. Chandrahasan, C. Ahn, J. Lee

    The objective of this study is to investigate the effect of the air-to-liquid ratio (ALR) in a low range on the characteristics of the spray issuing from a pressure-swirl duplex nozzle. In this study, the pressure-swirl duplex nozzle was used as an atomizer with non-swirl shroud air. The shroud air was radially discharged inward across the nozzle face to avoid the contamination of the nozzle tip. Jet A-1 fuel was used as the working fluid. The analysis of the spray characteristics was carried out by using a phase Doppler anemometry (PDA) system and a laser based planer imaging system. The flow rate, discharge coefficient, spray structure, spray cone angle, velocity and drop size distributions were analyzed. The results show that the discharge coefficient of the pilot nozzle is higher than that of the main nozzle and the combined pilot and main nozzles. The spray angle tends to decrease almost linearly with increasing ALR. The shape of the spray gradually changes from a hollow cone to a full cone with increasing ALR, as revealed in the axial velocity distributions with an increase in the axial distance. The weighted mean SMD (WMSMD) increases by 1.2 as the ALR increases, but thereafter, it decreases again.

    Keywords: Air to liquid ratio, Duplex nozzle, Laser diagnostics, Multiphase flow, Spray droplet size
  • Gautham Krishnamoorthy *, Lauren Elizabeth Clarke, Jeremy Nicholas‎ Thornock
    Non-uniform grids inevitably arise in multiphase flow simulation scenarios due to the need to resolve near-wall phenomena and/or large L/D ratios associated with the reactor configuration. This in conjunction with large density ratios of the constituent phases can retard the convergence of the pressure-correction equation that results from applying operator-splitting methods to the incompressible Navier-Stokes equations. Various pre-conditioning strategies to this ill-conditioned pressure-correction matrix are explored in this study for a class of bubbling bed simulations encompassing: different particle densities, bed-heights and dimensions (2D/3D). The right-side Block Jacobi preconditioning option resulted in a 20 - 35% decrease in CPU time that correlated well with a decrease in the number of iterations to reach a specified tolerance.
    Keywords: PETSc, MFiX, BiCGSTAB, Preconditioner, Multiphase flow
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال