به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

finite element method

در نشریات گروه پزشکی
  • فرشید صالحی شهرکی، زهرا زمانی*، مسعود رهائی فرد
    مقدمه

    در این تحقیق، تحلیل ترمومکانیکی مدل سه بعدی بریج دندانی سه واحدی در ناحیه پرمولر اول و دوم و مولر اول فک پایین در نرم افزار انسیس ورک بنچ انجام شد.

    مواد و روش ها

    بریج دندانی از جنس سرامیک لیتیوم دی سیلیکات و آلیاژ طلای نوع 2 به مدت 5 ثانیه در معرض سیال با دمای 4 و 60 درجه سانتیگراد روی سطح جونده و لینگوال دندان قرار گرفت. هم چنین بار استاتیکی و بار ضربه ای در وسط بریج دندان اعمال شد. اولین بار استاتیکی به صورت عمودی و دومین بار استاتیکی به صورت مایل در زاویه 45 درجه نسبت به سطح جونده و به سمت سطح باکال اعمال شد. شبیه سازی نیروی ضربه از طریق ضربه زننده با انرژی جنبشی متفاوت در راستای عمود بر سطح جونده انجام شد.

    یافته ها

    ماکزیمم تنش حرارتی ایجاد شده در دمای 4 درجه سانتیگراد بیشتر از دمای 60 درجه سانتیگراد بود و به ضریب انبساط حرارتی، مدول یانگ و میدان دما وابسته بود. همچنین ماکزیمم تنش حرارتی در بریج دندانی از جنس طلا حدود 30 درصد بیشتر از بریج سرامیکی بود. هم چنین مشخص شد که در مواردی که فقط نیروهای عمودی لحاظ شوند، تنش حدود 40 درصد نسبت به نیروی مایل کمتر پیش بینی می شود. شدت تنش تحت ضربه زننده صلب با انرژی جنبشی 2/2، 6/8 و 4/19 میلی ژول برای ضربه زننده به ترتیب 35/1، 2/2 و 3 برابر تنش استاتیکی محاسبه شد و نیروی عکس العمل در ریشه ها متناسب با مقدار انرژی جنبشی ضربه زننده بدست آمد.

    نتیجه گیری

    بر مبنای نتایج این پژوهش، تنش های ایجاد شده در بریج دندانی در بارگذاری ضربه و تحریک حرارتی سرد از بقیه حالت های بارگذاری بحرانی تر است. به طور میانگین، بریج دندانی سرامیکی، تنش کمتری در بافت دندان و بریج دندانی ایجاد می کرد.

    کلید واژگان: سرامیک، بریج دندانی تحلیل اجزاء محدود، طلا، تنش ترمومکانیکی
    Farshid Salehi Shahraki, Zahra Zamani *, Masoud Rahaeifard
    Background

    In this research, thermomechanical analysis of a 3D model of dental bridge between the first mandibular premolar and first molar was analyzed in Ansys Workbench software.

    Materials and Methods

    The dental bridge made of lithium disilicate ceramic and type II gold alloy was subjected to fluid at 4°C and 60°C for 5 seconds at occlusal and lingual surfaces. Moreover, the static and impact loads were applied at the center of the dental bridge. The first static load was a vertical force, and the second static load was in the form of an oblique force at an angle of 45° with respect to occlusal plane, oriented towards the buccal side. The impact loading simulation was performed for an impactor with different kinetic energy normal to the occlusal plane.

    Results

    The maximum thermal stress in the bridge and dental tissue at 4°C is obtained at more than 60°C, yet dependent on the coefficient of thermal expansion, the elastic modulus, and the temperature field. The maximum thermal stress in gold bridges is about 30% higher than in ceramic bridges. In addition, it was found that in the case when only vertical occlusion forces are acting, there is a significant underestimation of the maximum stress of 40% compared to the case of an oblique force. The stress intensity under rigid impactor with an initial kinetic energy of 2.2, 8.6, and 19.4 mJ was obtained at 1.35, 2.2, and 3 times the static stress, respectively, and the reaction force at roots was proportional to the magnitude of the kinetic energy of the impactor.

    Conclusion

    As evidenced in this study, the stress created in the dental bridge in impact loading and cold thermal stimulation is more critical than other loadings. On average, the ceramic dental bridge demonstrates less stress in both tooth tissue and dental bridge.

    Keywords: Ceramic, Dental bridge, finite element method, GOLD, Thermomechanical stress
  • Ergali Nabiyev, Arnat Baizakov, Khadisha Kashikova*, Ramazan Askerov, Zhassulan Argynbayev, Bauyrzhan Bissaliyev
    Background

    This article presents a mathematical justification for a new approach to arthroscopic stitching of the knee joint meniscus, based on a 3D computer model of the meniscus developed using the COMPASS-3D (APMFEM) program and AutodeskInventorPRO. The research with the patent RK No. 35413 dated 10.12.2021, titled "Method of arthroscopic stitching of the meniscus of the knee joint" builds upon the work of Yu.V. Labunsky.

    Methods

    Mathematical analysis was performed to compare two methods of stitching the meniscus: the new oblique-vertical stitch and the classical vertical stitch. The contact area of the meniscus tissues in the area of the rupture was measured for both stitching methods.

    Results

    The findings demonstrate that the new oblique-vertical stitch offers a 1.5 times larger contact area of the meniscus tissues in the area of the rupture, compared to the classical vertical stitch. Additionally, the new method provides a more significant grip on the radial and circular fibers of the meniscus, surpassing the capabilities of the classic seam.

    Conclusion

    The results of this study can be utilized to develop practical recommendations for traumatologists regarding arthroscopic stitching of the meniscus in the knee joint. The new approach, supported by mathematical analysis and a 3D computer model, offers improved outcomes in terms of contact area and grip on the meniscus fibers, potentially leading to enhanced surgical techniques and patient outcomes.

    Keywords: Biomechanics, Mathematical Justification, Finite Element Method, Knee Joint, Menisci, Meniscus Stitch
  • Nasireh Dayarian, Ali Khadem *
    Purpose

    The Boundary Element (BE) and Finite Element (FE) methods are widely used numerical techniques to solve the Electroencephalography (EEG) forward problem. However, the FE Method (FEM) has difficulty in simulating current dipoles due to singularity, and the BE method (BEM) cannot simulate inhomogeneous and anisotropic conductivity profiles. Recently, a hybrid BE-FE method has been proposed to benefit from the advantages of both BEM and FEM in solving the EEG forward problem. Generally, the type of mesh may significantly influence the results of numerical EEG forward solvers and should be carefully studied.

    Materials and Methods

    In this paper, the performance of the hybrid BE-FE method is compared with an approach of FEM (partial integration) using three types of meshes. The ground truth is the analytical EEG forward solutions obtained from inhomogeneous and isotropic/anisotropic four-layer spherical head models with dipoles of radial and tangential directions at four eccentricities.

    Results

    The minimum mean of Relative Difference Measure (RDM) obtained from Partial Integration (PI)-FEM is 0.0596 at 70% source eccentricity while by using the hybrid BE-FE method it is improved to 0.0251 at the same eccentricity. On the other hand, the maximum mean of Magnitude Ratio (MAG) obtained from PI-FEM is 0.6216 at 50% source eccentricity while it is improved to 0.9734 at the same eccentricity.

    Conclusion

    The results show that the hybrid BE-FE method outperforms PI-FEM in solving the EEG forward problem using three types of meshes regarding RDM and MAG error criteria.

    Keywords: Electroencephalography Forward Problem, Boundary Element Method, Finite Element Method, Hybrid Boundary Element–Finite Element Method, Spherical Head Model
  • Omar Nazal Auwer*, Marwa Sameh Shamaa, Shaza Mohammad Hammad
    Background

    The present study aimed to assess the stress and strain distribution on mini-screws and the surrounding bone in cases of different cortical bone thicknesses (CBTs), mini-screw insertion angles, and force directions using finite element analysis (FEA).

    Methods

    Inventor professional version 8 software was used to construct 24 three-dimensional assemblies of mini-screws inserted with different insertion angles (30º, 60º, and 90º) in alveolar bone blocks with different CBTs (0.5, 1, 1.5, and 2 mm). The models simulated mini-screws inserted in bones with different CBTs and different insertion angles. A 2-N load was applied in two directions to mini-screw heads. The resultant stresses of the applied load were collected from the output of the ANSYS program.

    Results

    The results indicated that force direction affected bone strains as the horizontal force generated more strains on cortical bone than the oblique one. Force applied to 60º inserted mini-screws generated much more strains on cortical bone than 90º and 30º inserted miniscrews. In a 60º inserted mini-screw, the horizontal force generated about 45% more strains on cortical bone than the oblique one. The exerted microstrain on bone decreased as CBT increased.

    Conclusion

    It can be concluded that inserting mini-screws at 60º to the bone surface should be avoided as it generates much more strains on cortical bone than 90º and 30º, especially when a force parallel to the bone surface is applied.

    Keywords: Cortical bone, Finite element method, Force directionInsertion angle, Mini-screw
  • Mahdi Moghimnezhad, Azadeh Shahidian *, Mohammad Andayesh
    Background
    Today, the most common method for kidney stone therapy is extracorporeal shock wave lithotripsy. Current research is a numerical simulation of kidney stone fragmentation via ultrasonic shock waves. Most numerical studies in lithotripsy have been carried out using the elasticity or energy method and neglected the dissipation phenomenon. In the current study, it is solved by not only the linear acoustics equation, but also the Westervelt acoustics equation which nonlinearity and dissipation are involved.
    Objective
    This study is to compare two methods for simulation of shock wave lithotripsy, clarifying the effect of shock wave profiles and stones’ material, and investigating side effects on surrounding tissues.
    Material and Methods
    Computational study is done using COMSOL Multiphysics, commercial software based on the finite element method. Nonlinear governing equations of acoustics, elasticity and bioheat-transfer are coupled and solved.
    Results
    A decrease in the rise time of shock wave leads to increase the produced acoustic pressure and enlarge focus region. The shock wave damages kidney tissues in both linear and nonlinear simulation but the damage due to high temperature is very negligible compared to the High Intensity Focused Ultrasound (HIFU).
    Conclusion
    Disaffiliation of wave nonlinearity causes a high incompatibility with reality. Stone’s material is an important factor, affecting the fragmentation.
    Keywords: Kidney calculi, Ultrasonic Waves, Extracorporeal Shockwave Lithotripsy, Finite element method, Soft Tissue Injuries
  • سپیده کیوانی، محمدرضا منظم اسماعیل پور، فاطمه فصیح رامندی، اکبر احمدی آسور، ملیحه کلاهدوزی*، زهرا هاشمی
    مقدمه

    در مطالعات متعددی عملکرد آکوستیکی مواد جاذب طبیعی مورد بررسی قرار گرفته است. برخی از این مواد در محدوده فرکانسی کمتر از 1000 هرتز عملکرد ضعیفی دارند. در مطالعه حاضر، سعی گردید تا نقش توالی قرارگیری ساختارهای دو لایه مرکب متشکل از الیاف طبیعی و مصنوعی در بهبود ضریب جذب صوتی لیف طبیعی در محدوده فرکانس پایین(63 تا 1000 هرتز) به وسیله مدل سازی با روش عددی اجزاء محدود بررسی گردد.

    روش کار

    در این پژوهش، عملکرد آکوستیکی ساختارهای دو لایه متشکل از مواد جاذب طبیعی و مصنوعی با روش عددی اجزاء محدود و مدل Johnson-Champoux-Allard در نرم افزار COMSOL نسخه 5.3a بررسی گردید. مواد جاذب صوتی مورد مطالعه شامل لیف خرما، فوم پلی اورتان و لاستیک بود. همچنین، هر یک از ساختارهای دو لایه مرکب متشکل از ضخامت10 میلی متری لیف خرما به همراه ضخامت10 میلی متری از هر یک از مواد جاذب مصنوعی شامل لاستیک یا فوم پلی اورتان بود که با چینش متفاوت مواد جاذب در هر ساختار، در مجموع چهار نوع ساختار دو لایه مرکب بررسی گردید.  

    یافته ها

    جایگاه قرارگیری لیف طبیعی می تواند نقش مهمی در عملکرد صوتی ساختارهای دو لایه مرکب مورد بررسی ایفا نماید. به طوریکه در مقایسه ساختارهای دو لایه مورد بررسی با یکدیگر مشخص شد که هنگامیکه در ساختارهای دو لایه مرکب با ضخامت 20 میلی متر، لیف طبیعی به عنوان اولین لایه مواجهه یافته با صوت نرمال بود، روند عملکرد آکوستیکی تقریبا مشابه با ساختار تک لایه متشکل از ماده طبیعی با ضخامت 20 میلی متر دیده شد؛ اما، زمانی که در ساختارهای مرکب، جاذب مصنوعی اولین لایه مواجهه یافته با صوت بود، روند عملکرد جذب صوتی بهبود پیدا کرد.

    نتیجه گیری

    بر اساس نتایج بدست آمده، ساختار مرکب دارای لایه فوقانی با چگالی بیشتر و تخلخل کمتر، روند جذب صوتی بهتری نسبت به ساختار تک لایه شامل ماده جاذب طبیعی را نشان داد.

    کلید واژگان: عملکرد آکوستیکی، لیف طبیعی، جاذب مصنوعی، روش اجزاء محدود
    Sepideh Keyvani, Mohammadreza Monazzam Esmaielpour, Fatemeh Fasih-Ramandi, Akbar Ahmadi Asour, Malihe Kolahdouzi*, Zahra Hashemi
    Introduction

    The acoustic performance of natural fiber adsorbents has been investigated in numerous studies. A part of these materials show a poor adsorption within the frequency range of less than 1000 Hz. In the present study, attempts were made to investigate the effect of layout sequence of double-layered composites consisting of natural and synthetic fibers on improving the acoustic adsorption coefficient of natural fiber in the low-frequency range (63 to 1000 Hz) using the numerical finite element method.

    Material and Methods

    In this study, the finite element method and the Johnson-Champoux-Allard model in COMSOL software version 5.3a were used to investigate the acoustic performance of the double-layered composites consisting of natural and synthetic adsorbents. The acoustic absorbers under study included date palm fiber, polyurethane foam and cellular rubber. Each double-layered composite included a date palm fiber with 10mm in thickness and a synthetic adsorbent (polyurethane foam or cellular rubber) with 10mm in thickness. In sum, four double-layered composite structures with different layouts of adsorbents in each structure were studied.

    Results

    The location of natural fiber can play a critical role in the acoustic performance of the double-layered composite structures such that comparing the studied double-layered composites revealed that when the natural fiber was the first layer exposed to the normal sound in the double-layered composites with 20mm in thickness, the trend of acoustic performance was approximately the same as the single-layered composite of natural fiber with 20mm in thickness; but in the composite structures, when the synthetic adsorbent was the first layer exposed to the sound, the trend of acoustic absorption was improved.

    Conclusion

    On the basis of the results, the double-layered composite structure with a higher-density and lower-porosity upper layer showed a better acoustic absorption trend than the single-layered composite including the natural adsorbent.

    Keywords: Acoustic Performance, Natural Fiber, Synthetic Adsorbent, Finite Element Method
  • محمدرضا منظم، علی فهیم، سعید احمدی، زهرا هاشمی*
    سابقه و هدف

     پانل های سوراخدار یکی از معمولترین جاذب های تشدیدی برای کنترل صدا می باشند. در این مطالعه خصوصیات اکوستیکی پانل های سوراخدار غیر مسطح در زاویه مایل و میدان دیفیوژ  به دو روش عددی و آزمایشگاهی مورد بررسی قرار گرفت.

    مواد و روش ها

      3 شکل غیر تخت برای صفحه سوراخدار در نظر گرفته شد و عملکرد جذبی آنها با شکل معمول صفحه سوراخدار (تخت) با استفاده از روش عددی مورد مقایسه قرار گرفت. بعد از تعیین بهترین شکل از لحاظ میزان ضریب جذب، شکل مورد نظر در ابعاد مورد تایید استاندارد ISO 354ساخته شد و در اتاق بازآوا مورد آزمون ضریب جذب رندوم قرار گرفت.

    یافته ها

    نتایج شبیه سازی عددی نشان داد که شکل های تعریف شده در این تحقیق همگی باعث بهبود ضریب جذب در فرکانس های میانی و بالایی و همچنین شکل C ضریب جذب بهتری در فرکانس های پایین نسبت به شکل تخت و دو شکل تعریف شده دارد. نتایج اندازه گیری ضریب جذب رندوم بر روی شکل منتخب  نشان داد که بیشترین ضریب جذب در فرکانس 160 هرتز با مقدار  77/0بدست آمده است. همچنین این شرایط در محیط عددی پیاده سازی شد و با توجه به روابط موجود ضریب جذب رندوم محاسبه شد.

    نتیجه گیری

    شکل ظاهری در بهبود میزان عملکرد جذبی این دسته از جاذب ها موثر است و مقایسه نتایج عددی و آزمایشگاهی نشان داد که میزان توافق این دو روش دیده می شود و روش عددی با دقت خوبی قادر به پیش بینی این کمیت می باشد.

    کلید واژگان: جاذب سوراخدار، شکل ظاهری- ضریب جذب رندوم- اتاق بازآوا- روش المان محدود
    Mohammad Reza Monazzam, Ali Fahim, Saeid Ahmadi, Zahra Hashemi*
    Background and purpose

    Perforated panels are one of the most common resonant absorbers for sound control. In this study the acoustic properties of non-flat perforated panels in oblique angle and field diffusion were investigated in both numerical and laboratory methods at 1.3 octave frequencies.

    Materials and methods

    3 non-flat shapes were considered for perforated panel and their absorption performance was compared with the usual shape of (flat) perforated panel. After determining the best shape in terms of absorption coefficient, it was constructed according to the standard  ISO 354at the approved dimensions and the desired structural properties and was subjected to absorption coefficient test in the reverberation chamber

    Results

    Numerical simulation results showed that the shapes defined in this paper all improve the absorption coefficient at the mid and high frequencies and also the shape C has higher absorption coefficient at the lower frequencies than the flat and two defined shapes. The results of measurement of absorption coefficient showed that the highest absorption coefficient of 0.77 is observed at the frequency of 160 Hz. Also, to compare the results, these conditions were implemented in numerical environment and the absorption coefficient was calculated according to the existing relationships.

    Conclusion

    Surface shape is effective in improving the absorption performance of these adsorbents and comparison of the numerical and laboratory results showed that acceptable agreement for these two methods is found in most of the frequency spectrum and the numerical method is able to predict this quantity with good accuracy.

    Keywords: Perforated acoustic absorber, Surface shape, statistical absorption coefficient, Reverberation chamber, Finite element method
  • Azadeh Ghouchani *, Mohammad H. Ebrahimzadeh

    The finite element method (FEM) is an engineering tool to assess the mechanical behavior of a structure under applied loads. This method was first applied for stress analysis of mechanical structures in the late 1950s. Later on, this new method got the application in biomedical engineering by analyzing the mechanical behavior of human femora. With the advent of faster computers, more advanced imaging modalities, and better FE software resulting in increased sophistication in 3D modeling, FE models have been greatly improved and the possibility of creating a FE model that can closely mimic the geometry and material properties of bones of an individual patient, so-called a patient-specific model, is accessible. The objective of this editorial is to try to elucidate the advancements in and applications of patient-specific finite element modeling and discuss whether such models can give promising results in predicting the outcome of orthopedic surgeries and enter clinical practice as a decision support system.

    Keywords: Patient-specific, finite element method, Clinical practice, Biomechanics, non-homogeneity
  • Mohammad Tabatabaei*
    Introduction

    Partial fibulectomy has been suggested for patients who encounter with severe varus/valgus or ununited fractures of the tibia. This study develops a finite element (FE) model of partial fibulectomy to study stress distribution in the tibiofemoral joint.

    Materials and Methods

    A 3D magnetic resonance imaging (MRI)-based of tibiofemoral joint and FE model was developed for study from a man volunteer with the normal left knee. Components consisted of the exact geometry of femur, tibia, fibula, meniscus, and articular cartilages. Firstly, geometries were constructed in Mimics and then exported to Rapid Forming XOR2 and finally, the Computer-aided design (CAD) model was analyzed in ABAQUS 6.10. Mechanical properties of the model for soft tissues were considered to be linear elastic, isotropic and homogenous and for bony parts were considered to be rigid.

    Results

    Model predictions were compared with normal one and used to derive stress distribution under physiological loading for standing in quasi- static condition. The results showed load transferring toward lateral condyle due to partial fibulectomy. The variation of stress distribution would increase the risk of osteoarthritis.

    Conclusion

    Our results have been predicted that partial fibulectomy could be an unknown risk factor for osteoarthritis and the model could be used for extended similar studies.

    Keywords: Partial fibulectomy, Tibiofemoral joint, Stress distribution, Finite element method
  • منصور ریسمانچیان، احسان قاسمی*، مهدی شاهمرادی
    مقدمه
    توزیع مناسب استرس در نواحی بی دندانی در اوردنچرهای متکی بر دندان فک پایین ضروری است. این توزیع استرس تحت نیروهای متفاوت به کمک الگوی عناصر محدود مورد بررسی قرار گرفت. هدف از این مطالعه، ارزیابی استرس ریج باقیمانده و جابجایی مخاط زیر اوردنچر متکی بر دو ایمپلنت فک پایین به وسیله روش آنالیز اجزای محدود بود.
    مواد و روش ها
    مدل دیجیتالی فک پایین با دو ایمپلنت (ITIبا قطر 1/4 و طول 12 میلیمتر) در نواحی کانین و اوردنچر متکی بر آن توسط نرم افزار آباکوس شبیه سازی شد. نیروی عمودی بر دندان آسیای اول سمت چپ  بتدریج از 0 تا 50 نیوتن  وارد گردید. توزیع استرس حاصله مورد ارزیابی قرار گرفت.
    یافته ها
    تحت نیروهای اکلوزالی اندک، جابجایی مخاطی و تجمع استرس استخوان کورتیکال ریج بی دندان، در سمت غیر کارگر دیده شد و بتدریج با افزایش نیرو به سمت کارگر منتقل شد. تجمع استرس استخوان کورتیکال بطور عمده در اطراف ایمپلنت و با میزان کمتر در ریج خلفی مشاهده گردید. جابجایی مخاطی اولیه و به میزان بیشتر در ناحیه بی دندانی خلفی و بخصوص روی ریج مایلوهایوئید رویت شد.
    نتیجه گیری
    در این مطالعه روش آنالیز اجزای محدود، مشاهده شد که جابجایی مخاط  نواحی خلفی به خصوص روی ریج مایلوهایوئید و کرست ریج بی دندان نسبت به نواحی قدامی اطراف ایمپلنت بیشتر است؛ بنابراین  این نواحی باید با دقت رلیف گردد و فشارها  تا جای ممکن به طرف باکال شلف هدایت  شود.
    کلید واژگان: ایمپلنت دندانی، استرس، اوردنچر، آنالیز اجزاء محدود
    Mansour Rismanchian, Ehsan Ghasemi *, Mahdi Shahmoradi
    Introduction
    Proper stress distribution in the edentulous ridge is necessary for implant-supported mandibular overdenture. For the purposes of the present study, the stress distribution was investigated under various types of forces using the finite element method (FEM).
    Materials and Methods
    A digital model of the mandible with two implants (ITI with diameter and length of 4.1 and 12 mm, respectively) in canine areas and the overdenture supported by it were simulated using ABAQUS software. A vertical force was applied to the left first molar and gradually increased from 0 to 50 N. Finally, the resultant stress distribution was evaluated.
    Results
    Under small amounts of occlusal force, mucosa displacement and stress accumulation in the cortical bone of edentulous ridge, occurred on the non-working side and moved to the working side with a gradual increase in the force. Major stress accumulation was observed in the cortical bone around the implant. Moreover, it was observed in a minor range in the posterior ridge. The mucosa displacement occurred primarily in the posterior edentulous ridge, especially in the mylohyoid ridge.
    Conclusions
    By using 3D FEM in the present study, it was observed that mucosa displacement is more likely to occur in the posterior areas, especially mylohyoid ridge and edentulous ridge crest in comparison to the areas around the implants. Therefore, this area should be carefully reliefand the forces should be directed towards the buccal shelf area as much as possible.
    Keywords: Dental implants, finite element method, Overdentures, Stress analysis
  • Alireza Poornasrollah, Ramin Negahdari, Vahedeh Gharekhani, Ali Torab, Soheil Jannati Ataei*
    Background

    The most common problem associated with dental implants is the abutment screw loosening. This research aimed to investigate the effect of the type of connection on screw loosening, using a finite element method (FEM).

    Methods

    Periosave system and different types of the implant–abutment connection were used for modeling. After being measured, CAD files were modeled using CATIA software and imported to the ANSYS analysis software, and the model was loaded.

    Results

    A force of 100 N was applied at 0.1 second, and no force was applied at 0.42 second. The screw head deformation at 0.1 and 0.42 seconds was 8 and 3.8 μm, and 7.6 and 2.8 μm at morse taper and octagon dental implant connections, respectively. The displacement rate of the internal surface of the abutment at 0.1 and 0.42 seconds was 10.7 and 8.4 μm, and 5.7 and 5.6 µm in the octagon and morse taper dental implant connections, respectively. The displacement of the implant suprastructure–abutment interface from the screw head at 0.1 and 0.42 seconds was 9 and 7 μm, and 7 and 6 μm in the morse taper and octagon dental implant connections, respectively. At intervals of 0 to 0.1 seconds and 0.6 to 0.8 seconds, the octagon connection was separated at the maximum screw head displacement and the internal part of the abutment, but the morse taper connection did not exhibit any separation. In the above time intervals, the results were similar to the maximum state in case of the minimum displacement of the screw head and the internal part of the abutment.

    Conclusion

    Screw loosening is less likely to occur in the morse hex connection compared to the octagon connection due to the lack of separation of the screw from the internal surface of the abutment.

    Keywords: Finite element method, implant–abutment connection, micro-motion, stress distribution
  • Sadegh Shurche *, Mohammad Yousefi
    Objective(s)

    Multifunctional nanomedicine is the new generation of medicine, which is remarkably promising and associated with the minimum toxicity of targeted therapy. Distribution and transport of nanoparticles (NPs) in the blood flow are essential to the evaluation of delivery efficacy.

    Materials and Methods

    In the present study, we initially designed a phantom based on Murray’s minimum work law using the AutoCAD software. Afterwards, the phantom was fabricated using lithography and imaged using a Siemens Magnetom 3T Prisma MRI scanner at the National Brain Mapping Laboratory, Iran. Finally, the velocity and pressure in the capillary network were simulated using the COMSOL software. Moreover, three-dimensional Navier-Stokes equations were applied to model the NP transport and dispersion in blood suspension.

    Results

    According to the findings, particle size, vessel geometry, and vascular flow rate affected the delivery efficacy and NP distribution. Cerebral blood flow, cerebral blood volume, mean transit time, and curves for the capillary network were obtained at different times. The simulations indicated that the velocity and pressure in the capillary network were within the ranges of 0.0001-0.0005 m/s and 5-25 mm/Hg, respectively. Higher particle concentration was also observed in the non-uniform NP distribution profile near the vessel wall.

    Conclusion

    We investigated the effects of the vessel size and geometry and particulate nature of blood on the delivery and distribution of NPs. For targeted drug delivery applications, a mechanistic understanding on the nanomedicine design was provided as well.

    Keywords: Capillary network, finite element method, Nanoparticle, Simulation
  • Mohammad Mianroodi, Siham Touchal*

    Joint replacement surgery in the wrist is less common than other replacement, but can be an option if you have painful arthritis that does not respond to other treatments.
    In wrist joint replacement surgery, the damaged parts of the wrist bones are removed and replaced with artificial components, called a wrist prosthesis. If the cartilage is worn away or damaged by injury, infection, or disease, the bones themselves will rub against each other, wearing out the ends of the bones. This causes a painful, arthritic condition. Osteoarthritis, the most common form of arthritis, results from a gradual wearing away of the cartilage covering on bones. Rheumatoid arthritis is a chronic inflammatory disease of the joints that results in pain, stiffness and swelling. Rheumatoid arthritis usually affects several joints on both the right and left sides of the body. Both forms of arthritis may affect the strength of the fingers and hand, making it difficult to grip or pinch.

    Keywords: Wrist prosthesis, Joint replacement, Pain, Finite element method, Rheumatoid arthritis
  • Parham Pedram*, Hannane Ghadirian, Sepideh Arab
    Background
    Splinting anterior teeth is a way to fix them after orthodontics treatments. Occlusal trauma from functional or parafunctional forces can cause stress increase and movements of teeth especially while having bone loss.
    Methods
    Six anterior teeth with different bone levels were designed in SolidWorks (2010), the models were then transferred to ANSYS Workbench 12.1. The models were loaded with 187 N force on the incisal edges of two incisors.
    Results
    Stress on canine was 0.45 MPa in normal bone height and increased to 0.60 MPa in five millimeters of anterior teeth bone loss. Labial displacement was less in normal alveolar bone height while it was increased in all those teeth with five millimeter of bone loss.
    Conclusions
    Splinting distribute the forces between teeth and the stress production on canine increase while it splinted with low level bone incisors. Anterior teeth also showed tipping movements in reply to increased forces.
    Keywords: Alveolar Bone Loss, Tooth Splint, Stress, Finite Element Method
  • غلام رضا روحی*، آزاده قوچانی، محمدحسین ابراهیم زاده
    پیش زمینه
    ناحیه دیستال ران شایع ترین مکان بروز تومور سلول غول آسا است. روش درمان جراحی شامل کورتاژ تومور و سیمان گذاری است. در حالیکه شکستگی یکی از معضلات پس از جراحی است، معیار یا داده بیومکانیکی دقیقی برای مشخص کردن بیمارانی که در معرض خطر بالای شکستگی قرار دارند وجود ندارد.
    مواد و روش ها
    با توجه به ارتباط تنگاتنگ بین کاهش در استحکام استخوان و خطر شکستگی آن، در این تحقیق با استفاده از روش اجزای محدود بر مبنای تصاویر برش نگاری کمی کامپیوتری، و با در نظر گرفتن مکانیک سطح مشترک سیمان و استخوان، علاوه بر لحاظ خواص ناهمگن و رفتار استخوان پس از رسیدن به تنش تسلیم، به بررسی استحکام استخوان  پس از جراحی پرداخته میشود. صحت و دقت مدل های اجزای محدود در پیش بینی استحکام استخوان با مقایسه نتایج آنها با داده های آزمایشگاهی روی 14 نمونه انسانی و روی یک گروه داده مستقل به کمک آزمون های آماری ارزیابی می شود. 
    یافته ها
    ازمون t زوجی  تفاوت معناداری بین بار شکست محاسبه شده از تحلیل اجزای محدود و ثبت شده در آزمایشگاه را نشان نداده است. همچنین شیب بدست آمده در رابطه خطی بین دو بار شکست،  محاسبه شده توسط روش اجزای محدود و ثبت شده در آزمون مکانیکی  آزمایشگاهی، از تحلیل رگرسیون خطی تفاوت معناداری را از 1 نشان نداده است.
    نتیجه گیری
    نتایج حاصل، توانایی روش اجزای محدود بر مبنای تصاویر برش نگاری کمی را در پیش بینی استحکام استخوان دیستال ران پس از جراحی تومور سلول غول آسا نشان میدهد. این مدل ها همچنین میتوانند برای بررسی بیشتر جنبه های نامشخص مسائل سیمان-استخوان مورد استفاده قرار بگیرند.
    کلید واژگان: برش نگاری کمی کامپیوتری، روش اجزای محدود، استحکام استخوان دیستال ران، تومور سلول غول آسا، آزمون مکانیکی برون تنی
    Gholamreza Rouhi*, Azadeh Ghouchani, Mohammad Hossein Ebrahimzadeh
    Background
    Distal femur is the most frequently affected site by giant cell tumor (GCT). Surgery including tumor curettage and defect reconstruction with bone cement is a widely-used treatment. While post-operative fracture is a common complication, no criteria and/or biomechanical data are available to identify patients at high risk of fracture.
    Methods and materials
     Since there is a strong correlation between bone strength and its fracture risk, in this study, bone strength following GCT surgery was predicted using quantitative computed tomography (QCT)-based finite element method (FEM). Mechanical properties of bone-cement interface, along with non-linear and non-homogeneous, as well as post-yield properties of bone were taken into account in the FE models. The accuracy and precision of FE models in predicting bone strength were evaluated using statistical tests by comparing the FE results with the results obtained using in-vitro mechanical tests on 14 cadaveric specimens and an independent data set.
    Results
    According to paired t-test analysis, no significant difference was observed between the bone strengths predicted by FEM   and those calculated by in-vitro tests  . In addition, based on the results of regression analysis, there was a linear relationship between  and with a slope not different from 1.
    Discussion
    The obtained results show the capability of QCT-based FEM in predicting bone strength in distal femur following GCT surgery, and thus they can be employed to investigate various features of the bone-cement construct with the hope of shedding light on the obscure aspects of the problem.
    Keywords: Quantitative Computed Tomography (QCT), Finite Element Method, Distal Femur Strength, Giant Cell Tumor, In-Vitro Mechanical Test
  • Seyed Esmail Razavi, Vahid Farhangmehr*, Nafiseh Zendeali
    Introduction
    The middle cerebral artery (MCA) is one of the three major paired arteries that supply the blood to the cerebrum. In the present study, the three-dimensional (3D) blood flow in the left MCA was numerically simulated by using the medical imaging.
    Methods
    The arterial geometry was obtained by applying the CT angiography of the MCA of a 75-year-old man. The blood flow was assumed to be laminar and unsteady. Numerical simulations were done by commercial software package COMSOL Multiphysics 5.2. In this software, the Galerkin’s finite element method was applied to solve the governing equations.
    Results
    It was found that the results obtained for the Newtonian and non-Newtonian models of blood do not differ from each other significantly. Thus, the Newtonian model for blood flow in the MCA is acceptable. Also, the most susceptible region of the MCA for Atherosclerosis was detected.
    Conclusion
    It can be concluded that the application of the Newtonian model for the blood flowing in the MCA is acceptable. Also, atherosclerosis has the potential to occur at the middle of a branch of the MCA which has the highest geometrical curvature.
    Keywords: Middle cerebral artery, Hemodynamics, Non-Newtonian model, Finite element method
  • The Most Appropriate Reconstruction Method Following Giant Cell Tumor Curettage: A Biomechanical Approach
    Azadeh Ghouchani, Mohammad H. Ebrahimzadeh, Gholamreza Rouhi *

    Giant cell tumor (GCT) is a primary and benign tumor of bone, albeit locally aggressive in some cases, such as in the epi-metaphyseal region of long bones, predominantly the distal end of femur and proximal end of tibia (1). There are a variety of treatments for a bone affected by GCT, ranging from chemotherapy, radiotherapy, embolization, and cryosurgery, to surgery with the use of chemical or thermal adjuvant (2). Even with advances in new chemotropic drugs, surgery is still the most effective treatment for this kind of tumor (3). The surgery often involves defect reconstruction following tumor removal (4). The aims of treatment are removing the tumor and reconstructing the bone defect in order to decrease the risk of recurrence, and restore limb function, respectively. To achieve these goals, reconstruction is usually accompanied with PMMA bone cement infilling (4). The high heat generated during PMMA polymerization in the body can kill the remaining cancer cells, and hence the chance of recurrence decreases (5). In addition, filling the cavity with bone cement provides immediate stability, enabling patients to return to their daily activities soon (6).
    The major drawbacks of the technique of curettage and cementation is the high fracture risk, due to the early loading of the bone, and the insufficient fixation of the cement in the cavity (7). Hence, several methods have been developed to fix the bone cement in order to prevent the postoperative fracture. Pattijn et.al packed the cement with a titanium membrane which was attached to the periosteum with small screws (7). The membrane can make early normal functioning of patients possible, since it partially restore the strength and stiffness of the bone. Cement augmentation with internal fixation is another method to decrease the risk of postoperative fractures (6, 8, 9).

    Keywords: Giant cell tumor, orthopedic biomechanics, finite element method
  • Hadi Samadian, Hamid Mobasheri, Saeed Hasanpour, Reza Faridi Majidi *
    Objective(s)
    Since the electric field is the main driving force in electrospinning systems, the modeling and analysis of electric field distribution are critical to the nanofibers production. The aim of this study was modeling of the electric field and investigating the various parameters on polyacrylonitrile (PAN) nanofibers morphology and diameter.
    Methods
    The electric field profile at the nozzle and electrospinning zone was evaluated by Finite Element Method. The morphology and diameter of nanofibers were examined by Scanning electron microscopy (SEM).
    Results
    The results of the electric field analysis indicated that the electric field was concentrated at the tip of the nozzle. Moreover, in the spinning direction, the electric field was concentrated at the surface of the spinneret and decayed rapidly toward the surface of the collector. Increasing polymer solution concentration from 7 to 11wt.% led to increasing nanofibers diameter form 77.76 ± 19.44 to 202.42 ± 36.85.
    Conclusions
    Base on our results, it could be concluded that concentration of the electric field at the tip of the nozzle is high and initiates jet and nanofibers formation. PAN nanofibers can be transformed to carbon nanofibers which have various applications in biomedicine.
    Keywords: Polyacrylonitrile Nanofibers, Electrospinning, Electric field profile, finite element method
  • Jean Marc Retrouvey, Allahyar Geramy
    Background
    Occlusal loads are always present though not widely considered in orthodontic treatments. Applied force systems are analyzed in detail and taught but their interaction with occlusal force is oftentimes ignored. Numeric evaluation of this combination by finite element method is the main goal of this research.
    Objectives
    The present study has implemented FEA to investigate the effect of orthodontic force application on the tooth-periodontium-alveolar bone system.
    Materials And Methods
    A 3D model of a lower premolar was designed. The model contained cortical and spongy bone, PDL, and tooth. A 1.73 N force decomposed to 1 N in each plane axis was applied as a random levelling and aligning force to assess the von Mises stress produced at the mesial aspect of the PDL from cervical down to the apical area. At the second phase a 200-Newton intruding force vector was applied simulating the occlusal force. The effects of the combination force system were evaluated in the same area of the PDL.
    Results
    The maximum finding of von Mises for both stages were in found in the cervical area. This was almost 0.267 MPa for the first stage and 2.27 MPa for the second stage.
    Conclusions
    Our findings show that the co-existence of heavy occlusal forces due to clenching or bruxism in our tooth-periodontium-orthodontic force system has a significant influence on the magnitude and location of the high stress areas.
    Keywords: Occlusal Force, Orthodontic Force, Von Mises Stress, Finite Element Method
  • Hasan Salehi, Sepide Arab
    Background
    Alignment of the teeth as the first stage of comprehensive orthodontic treatment has widely been addressed. Several methods such as using super elastic arch wires, multi-strand wires and incorporation of various loops into the round stainless steel wires have been suggested in this stage.
    Objectives
    The aim of this study was to investigate and compare the horizontal forces produced by six various loop designs in different amounts of activation using the finite element method.
    Materials And Methods
    The Finite Element Model (FEM) was used to design and compare the horizontal forces of round 0.014 inches stainless steel vertical open loop, vertical closed loop, vertical helical open loop, vertical helical closed loop, plain vertical loop and the squash loop. The forces were measured at 0.1, 0.4, 0.8 and 1mm activations.
    Results
    For all activations, vertical open loop had the highest horizontal force; while vertical helical closed loop showed the lowest force.
    Conclusions
    The design of vertical loops influences the horizontal force in all activations, immensely.
    Keywords: Loop Design, Force, Finite Element Method
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال