به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

genetic algorithm

در نشریات گروه پزشکی
  • Nayyer Mostaghim Bakhshayesh, Mousa Shamsi*, Faegheh Golabi
    Background

    Microarray is a sophisticated tool that concurrently analyzes the expression levels of thousands of genes, giving scientists an overview of DNA and RNA study. This procedure is divided into three stages: contact with biological samples, data extraction, and data analysis. Because expression levels are disclosed by the interplay of light with fluorescent markers, the data extraction stage relies on image processing methods. To extract quantitative information from the microarray image (MAI), four steps of preprocessing, gridding, segmentation, and intensity quantification are required. During the generation of MAIs, a large number of error‑prone processes occur, leading to structural problems and reduced quality in the resulting data, affecting the identification of expressed genes.

    Methods

    In this article, the first stage has been examined. In the preprocessing stage, the contrast of the images is first enhanced using the genetic algorithm, then the source noises that appear as small artifacts are removed using morphology, and finally, to confirm the effect of the contrast enhancement (CE) on the main stages of microarray data processing, gridding is checked on complementary deoxyribonucleic acid MAIs.

    Results

    The comparison of the obtained results with an adaptive histogram equalization (AHE) and multi‑decomposition histogram equalization (M‑DHE) methods shows the superiority and efficiency of the proposed method. For example, the image contrast of the Genomic Medicine Research Center Laboratory dataset is 3.24, which is 42.91 with the proposed method and 13.48 and 32.40 with the AHE and M‑DHE methods, respectively.

    Conclusions

    The performance of the proposed methods for CE is evaluated on 3 databases and a general conclusion is obtained as to which CE method is more suitable for each dataset.

    Keywords: Contrast enhancement, genetic algorithm, genomics, gridding, mathematical morphology, microarray images
  • الهام عسکری*، سارا معتمد، صفورا عاشوری قلعه کلی
    مقدمه

    تشخیص دقیق بیماری آلزایمر در مراحل اولیه نقش مهمی را در مراقبت از بیمار دارد و می بایست اقدامات پیشگیرانه را قبل از آسیب غیرقابل برگشت به مغز انجام داد. با افزایش سن تغییراتی در حافظه ایجاد می شود که طبیعی است؛ اما نشانه های بیماری آلزایمر بیش از فراموشی های موقتی می باشد. تشخیص زودهنگام و هوشمند بیماری آلزایمر در حالات مختلف می تواند کمک شایانی به بیماران و پزشکان بکند.

    روش

    در روش پیشنهادی برای بهبود بازشناسی افراد مبتلا به آلزایمر از افراد سالم در حالات هیجانی از شبکه عصبی کانولوشنی استفاده خواهد شد. ابتدا بر روی سیگنال الکتروانسفالوگرافی، پیش پردازش های موردنیاز انجام می شود و سپس به عنوان ورودی به شبکه اعمال خواهد شد. در ادامه جهت بهینه سازی وزن های شبکه عصبی کانولوشنی از الگوریتم ژنتیک استفاده می شود.

    نتایج

    تحقیقات انجام شده نشان می دهد که لوب پیشانی مغز با احساسات در ارتباط می باشد و استفاده از کانال های F3 و F4 در مقایسه با سایر کانال ها اطلاعات بیشتری را منعکس می کند، بنابراین با این اطلاعات عمل تشخیص افراد آلزایمری در حالات هیجانی بهتر انجام می شود.

    نتیجه گیری

    روش پیشنهادی با سایر دسته بندها در حالات خوشایندی و برانگیختگی مورد ارزیابی قرار گرفت و مشاهده شد که این روش در مقایسه با روش های دیگر با دقت 92/3 درصد در خوشایندی و 94/3 درصد در برانگیختگی در بازشناسی افراد مبتلا به آلزایمر از کارایی بهتری برخوردار است.

    کلید واژگان: آلزایمر، الکتروانسفالوگرافی، شبکه عصبی کانولوشن، الگوریتم ژنتیک
    Elham Askari*, Sara Motamed, Safoura Ashori Ghale Koli
    Introduction

    Accurate diagnosis of Alzheimer’s disease in the early stages plays an important role in patient care, and preventive measures should be taken before irreversible brain damage occurs. With increasing age, there are changes in memory, which is normal, but the symptoms of Alzheimer’s disease are more than temporary forgetfulness. Early and intelligent diagnosis of Alzheimer’s disease in different situations can greatly help patients and physicians.

    Method

    In the proposed method, a convolutional neural network will be used to improve the recognition of people with Alzheimer’s disease from healthy people in emotional states. First, the required pre-processing is done on the electroencephalography signal, and then, it will be applied as an input to the network. Next, the genetic algorithm is used to optimize the weights of the convolutional neural network.

    Results

    The research shows that the frontal lobe of the brain is related to emotions and the use of F3 and F4 channels reflects more information compared to other channels, so with this information, the process of recognizing Alzheimer’s patients in emotional states is better.

    Conclusion

    The proposed method was evaluated with other categories in valence and arousal states. It was observed that this method has a better efficiency compared to other methods with an accuracy of 92.3% in valence and 94.3% in arousal in recognizing people with Alzheimer’s disease.

    Keywords: Alzheimer, Electroencephalography, Convolutional Neural Network, Genetic Algorithm
  • Ghazale Amini, Fakhreddin Salehi *, Majid Rasouli
    This study investigated the use of an adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm–artificial neural network (GA-ANN) for the prediction of drying time and moisture content of wild sage seed mucilage (WSSM) in an infrared (IR) dryer. These models (ANFIS and GA-ANN) were fed with three inputs of IR radiation intensity (150, 250, and 375 W), the distance of mucilage from the lamp surface (4, 8, and 12 cm), mucilage thickness (0.5, 1, and 1.5 cm) for prediction of average drying time. Also, to predict the moisture content, these models were fed with 4 inputs IR power, lamp distance, mucilage thickness, and treatment time. The GA–ANN model structure that used 4 hidden neurons, and modeled the drying time of WSSM with a correlation coefficient (r) of 0.984. Also, the GA–ANN model with 9 neurons in one hidden layer, predicts the moisture content with a high r-value (r=0.999). The calculated r-values for the prediction of drying time and moisture content using the ANFIS-based subtractive clustering algorithm were 0.925 and 0.998, respectively, that shows a higher correlation among predicted data and experimental data. Sensitivity analysis results demonstrated that IR intensity and mucilage distance were the main factors for the prediction of drying time and moisture content of WSSM drying, respectively. In summary, the GA–ANN approach performs better than the ANFIS approach and this method can be applied to relevant IR drying process with satisfactory results.
    Keywords: Genetic algorithm, Infrared drying, Sensitivity analysis, Subtractive clustering
  • Fereshte Saheli, Naser Vosoughi, Zafar Riazi, Fatemeh S. Rasouli, Alireza Jowkar
    Purpose

    Online determination of the elemental composition of tissues near the Bragg peak is a challenge in proton therapy related studies. In the present work, an analysis method based on the whole spectral information is presented for the quantitative determination of the elemental composition (weight %) of an irradiated target from its emitted Prompt Gamma (PG) spectrum.

    Materials and Methods

    To address this issue, four test phantoms with different weights (%) of 12C, 16O, 20Ca, and 14N elements were considered. The simulated PG spectra were recorded using 3 × 3 inch NaI detectors. A library consisting of the spectra of single-element phantoms as well as the spectra of test-irradiated phantoms was produced for 30, 70, and 150 MeV incident protons using the Geant4 Monte Carlo toolkit. The elemental analysis was performed using the information of the whole spectrum by applying two methods, including the well-known Genetic Algorithm (GA) and Multiple Linear Regression (MLR).

    Results

    The results show that the proposed method estimates the oxygen concentration accurately. Furthermore, the estimated weights of other elements, with both methods, agree well with nominal values in each test phantom, for the considered energies.

    Conclusion

    The proposed quantitative elemental analysis of proton-bombarded phantoms using their induced PG spectrum is expected to be beneficial in treatment planning and treatment verification studies.

    Keywords: Proton Therapy, Prompt Gamma-Ray Spectrum, Whole Spectrum Analysis, Genetic Algorithm, Multiple Linear Regression
  • Farzaneh Mohammadi, Zeynab Yavari *, Farideh Mohammadi, Somaye Rahimi
    Aim

     A reliable model for wastewater treatment plants (WWTPs) is essential to provide a tool for predicting their performance and to form a basis for controlling the operation of the process also; this would minimize the operation costs. In recent years, computer-based methods have been applied to many areas of environmental issues. Artificial neural networks (ANNs) and genetic algorithm (GA) techniques could be applied for modeling WWTP processes, owing to their high accuracy, adequacy, and quite promising applications in engineering. 

    Materials and Methods

     This study applied multilayer feed forward back propagation neural network and GA to predict and optimize the performance of the second phase of the Isfahan North WWTP. Experimental results, which demonstrated the performance of the plant over 6 years were applied for modeling. 

    Results

     A three-layer neural network was developed as a predictive model and the network was trained with Levenberg–Marquardt algorithm. The chemical oxygen demand (COD), biochemical oxygen demand (BOD), total suspended solids (TSS), total kjeldahl nitrogen (TKN), and total phosphorus (TP) were introduced as the model input and output. Neural network performance was evaluated with correlation coefficient ® and least mean square error. Proposed model demonstrated the high consistency of the results of modeling and experiments. GA achieved the best value of input parameters as 324.36, 457.37, 359.11, 60.09, and 14.15 mg/l for BOD, COD, TSS, TKN, TP, respectively. 

    Conclusion

     ANN and GA combination provides powerful analysis tool for modeling and optimization of nonlinear relationships between the parameters in WWTPs and could be used for proper design and operation of the WWTPs.

    Keywords: Artificial Neural Network, Genetic algorithm, Modeling, wastewater
  • محمدجواد حسین پور*
    هدف

    به دلیل وجود حجم عظیمی از داده ها در مورد افراد مبتلا به بیماری دیابت، امکان استخراج عوامل پیش بینی بیماری دیابت توسط متخصصین با استفاده از استخراج دانش از این حجم عظیم داده، امکان پذیر نخواهد بود. علم داده کاوی به کمک روش های موثر خود با هدف کشف پیش بینی بیماری ها به این مهم دست یافته و سبب کمک به پزشکان و کادر درمان در پیش بینی و تشخیص بیماری ها شده است.

    روش ها

     پژوهش حاضر از نوع کاربردی پیمایشی در سال 1399 انجام شده است. در این پژوهش، از مجموعه داده میرشریف و همکاران استفاده شده است. در اینجا از روش مجموعه داده های اولیه برای جمع آوری داده ها استفاده شده و جامعه آماری مورد نظر شامل 105 مورد اطلاعات ثبت شده بیماران از سال 1390 تا 1393 در تحقیقی میدانی از کلینیک پزشکی تخصصی زنان در تهران است که از این میان، 80 نفر انسان سالم و 25 نفر انسان مبتلا به بیماری دیابت بارداری بودند. از نرم افزار متلب جهت تجزیه و تحلیل و بررسی نتایج استفاده شده است.

    یافته ها

     نتایج و مقایسه های انجام گرفته در این پژوهش، نشان از کارایی بالای روش پیشنهادی در پیش بینی بیماران دیابت بارداری دارد. همچنین دقت روش پیشنهادی برابر 93 درصد حاصل شد که در مقایسه با روش میرشریف و همکاران بر روی همین مجموعه داده از دقت بیشتری برخوردار بود.

    نتیجه گیری

     به دلیل اینکه سیستم پیشنهادی عملکرد مطلوبی داشته و ازلحاظ دقت در مجموعه داده مورد نظر نسبت به روش های قبلی به عدد 93/2 درصد رسیده است. پس می توان از رویکرد هوشمند و بدون نظارت، جهت تشخیص بیماری دیابت بارداری استفاده کرد.

    کلید واژگان: پیش بینی دیابت بارداری، الگوریتم هوشمند، شبکه عصبی مصنوعی
    Mohammadjavad Hosseinpoor*
    Objective

    Due to the large amount of data for people with diabetes, it is very difficult to extract the predictors of diabetes. Data mining science can discover the predictors of diseases and help physicians and medical staff in predicting and diagnosing diseases.

    Methods

    This is an applied survey study conducted in 2020 using the dataset used by Mirsharif et al. The study population includes 105 cases with data registered from 2011 to 2014 in a specialized women’s medical center in Tehran, of which 80 were for healthy women and 25 were for women with gestational diabetes. MATLAB software was used to analyze and evaluate the results.

    Results

    The results and comparisons showed the high efficiency of the proposed method in predicting gestational diabetes. The accuracy of the proposed method was 93%, which was more accurate than the method proposed by Mirsharif et al. 

    Conclusion

    The proposed prediction method has good performance and high accuracy compared to previous methods. Therefore, this intelligent and unsupervised method can be used to predict gestational diabetes.

    Keywords: Gestational diabetes, Genetic algorithm, Artificial neural network
  • Maryam Mahdavi, Shiva Ariaiinezhad, Parastou Kordestani *, Khadijeh Heidarizadeh, Ahmad Eskandarzadeh, Rasool Mohammadi
    Several factors must be considered to predict the mortality of patients with hematologic malignancies. These factors and characteristics complicate doctors' and nurses' ability to predict the prognosis of such diseases. This work aimed to develop a mortality prediction model for leukemia patients utilizing artificial intelligence and a nearest-neighbor genetic algorithm. This retrospective study employed the medical records of 235 leukemia patients at Ahvaz Oncology Center from 2016 to 2019. To provide a mortality prediction model, a genetic algorithm and nearest neighbor were used. A genetic approach was employed to identify the determinants of mortality, and the nearest neighbor technique was utilized to enhance model accuracy. Ultimately, the diagnostic power of the mortality prediction model was assessed using accuracy, sensitivity, and specificity criteria. The laboratory values and variables incorporated into the genetic algorithm revealed that mechanical ventilation, hemodialysis, neutropenia, and bone marrow transplantation significantly influenced the mortality rates of patients with leukemia. The diagnostic accuracy of the genetic algorithm introduced in this study was 77.4%, with a sensitivity of 78.2% and a specificity of 82%. The results showed the artificial intelligence algorithm's effectiveness in predicting leukemia patients' mortality.
    Keywords: Artificial Intelligence, Leukemia, Genetic Algorithm, K-Nearest Neighbor Algorithm, Oncology, Intensive Care Unit
  • Reza Rabiei, Seyed Mohammad Ayyoubzadeh, Solmaz Sohrabei *, Marzieh Esmaeili, Alireza Atashi
    Background
    Breast cancer is considered one of the most common cancers in women caused by various clinical, lifestyle, social, and economic factors. Machine learning has the potential to predict breast cancer based on features hidden in data.
    Objective
    This study aimed to predict breast cancer using different machine-learning approaches applying demographic, laboratory, and mammographic data.
    Material and Methods
    In this analytical study, the database, including 5,178 independent records, 25% of which belonged to breast cancer patients with 24 attributes in each record was obtained from Motamed cancer institute (ACECR), Tehran, Iran. The database contained 5,178 independent records, 25% of which belonged to breast cancer patients containing 24 attributes in each record. The random forest (RF), neural network (MLP), gradient boosting trees (GBT), and genetic algorithms (GA) were used in this study. Models were initially trained with demographic and laboratory features (20 features). The models were then trained with all demographic, laboratory, and mammographic features (24 features) to measure the effectiveness of mammography features in predicting breast cancer.
    Results
    RF presented higher performance compared to other techniques (accuracy 80%, sensitivity 95%, specificity 80%, and the area under the curve (AUC) 0.56). Gradient boosting (AUC=0.59) showed a stronger performance compared to the neural network.
    Conclusion
    Combining multiple risk factors in modeling for breast cancer prediction could help the early diagnosis of the disease with necessary care plans. Collection, storage, and management of different data and intelligent systems based on multiple factors for predicting breast cancer are effective in disease management.
    Keywords: Artificial Intelligence, Breast cancer, computing methodologies, genetic algorithm, Machine Learning
  • Mahdieh Mirzaie, Yunes Jahani, Abbas Bahrampour
    Background

    Logistic regression is one of the most common models used to predict and classify binary and multiple state responses in medicine. Genetic algorithms search techniques inspired by biology have recently been used successfully as a predictive model.

    Objective

    The aim of this study was to use the genetic algorithm and logistic regression models in diagnosing and predicting factors affecting breast cancer mortality.

    Method

    In this study, data of 2836 people with breast cancer during the years 2014-2018 was examined; their information was recorded in the cancer registration system of Kerman University of Medical Sciences. Death status was considered a dependent variable, while age, morphology, tumor differentiation (grad), residence status, and place of residence were considered independent variables. Sensitivity, specificity, accuracy, and area under the ROC curve were used to compare the models.

    Results

    the logistic regression model determined factors affecting the breast cancer mortality rate, (with sensitivity (0.62), specificity (0.81), area under the ROC curve (0.74), and accuracy (0.84)), and genetic algorithm model (, with sensitivity (0.19), specificity (0.97), area under the ROC curve (0.58) and accuracy (0.87)).

    Conclusions

    The sensitivity and area under the ROC curve of the logistic regression model were higher than those of the genetic algorithm, but the specificity and accuracy of the genetic algorithm were higher than those of the logistic regression. According to the purpose of the study, two models can be used simultaneously.

    Keywords: Breast cancer, Cross over, Mutation, Genetic algorithm, Logistic regression
  • Farshad Minaei, Hassan Dosti, Ebrahim Salimi Turk, Amin Golabpour
    Introduction

    Improvement of technology can increase the use of machine learning algorithms in predicting diseases. Early diagnosis of the disease can reduce mortality and morbidity at the community level.

    Material and Methods

    In this paper, a clinical decision support system for the diagnosis of gestational diabetes is pres ented by combining artificial neural network and meta - heuristic algorithm. In this study, four meta - innovative algorithms of genetics, ant colony, particle Swarm optimization and cuckoo search were selected to be combined with artificial neural network. Th en these four algorithms were compared with each other. The data set contains 768 records and 8 dependent variables. This data set has 200 missing records, so the number of study records was reduced to 568 records.

    Results

    The data were divided into two sets of training and testing by 10 - Fold method. Then, all four algorithms of neural - genetic network, ant - neural colony network, neural network - particle Swarm optimization and neural network - cuckoo search on the data The trainings were performed and then ev aluated by the test set. And the accuracy of 95.02 was obtained. Also, the final output of the algorithm was examined with two similar tasks and it was shown that the proposed model worked better.

    Conclusion

    In this study showed that the combination of t wo neural network and genetic algorithms can provide a suitable predictive model for disease diagnosis.

    Keywords: Diagnostic Model, Neural Network Algorithms, Genetic Algorithm
  • Seyyedeh Farkhondeh Tayebnasab, Mohebali Rahdar, Farhad Hamidi *, Hamid Raza Maleki
    Background
    The cost of health care is a large part of every household’s budget. On the other hand, as an economic entity, the hospital is constantly faced with different aspects of cost and revenue. So, we are dealing with conflicting objectives.
    Objectives
    The main purpose of the research is to help financial management in a specialty hospital. This article provides part of operational research under bi-level optimization for hospital managers to provide targeted financial planning. The method is based on the fact that the objective is to maximize the hospital income on one level, and on the other level, the objective is to reduce the patient’s payment.
    Methods
    The hierarchical and decentralized optimization problem is written as a bi-level model that minimizes patient costs and maximizes hospital revenues, which is an NP-Hard problem. The optimal solution to this problem is obtained using a genetic algorithm. Then, the hospital’s performance is evaluated by the Pabon Lasso diagram. It is shown that the use of this model has a significant effect on the hospital’s performance.
    Results
    Implementation of this model in the studied hospital shows that patient payment costs decreased and hospital income increased (reaching equilibrium point).
    Conclusion
    Hospital performance after model implementation was evaluated by the Pabon Lasso diagram and showed that it has an effective role in hospital performance.
    Keywords: Bi-level optimization model, Genetic Algorithm, Pabon Lasso, Health Care Costs, Hospitals
  • Roshanak Ghods, Vahid Reza Nafisi*
    Background

    Temperament (Mizaj) determination is an important stage of diagnosis in Persian Medicine. This study aimed to evaluate thermal imaging as a reliable tool that can be used instead of subjective assessments.

    Methods

    The temperament of 34 participants was assessed by a PM specialist using standardized Mojahedi Mizaj Questionnaire (MMQ) and thermal images of the wrist in the supine position, the back of the hand, and their whole face under supervision of the physician were recorded. Thirteen thermal features were extracted and a classifying algorithm was designed based on the genetic algorithm and Adaboost classifier in reference to the temperament questionnaire.

    Results

    The results showed that the mean temperature and temperature variations in the thermal images were relatively consistent with the results of MMQ. Among the three body regions, the results related to the image from Malmas were most consistent with MMQ. By selecting six of the 13 features that had the most impact on the classification, the accuracy of 94.7 ± 13.0, sensitivity of 95.7 ± 11.3, and specificity of 98.2 ± 4.2 were obtained.

    Conclusions

    The thermal imaging was relatively consistent with standardized MMQ and can be used as a reliable tool for evaluating warm/cold temperament. However, the results reveal that thermal imaging features may not be only main features for temperament classification and for more reliable classification, it needs to add some different features such as wrist pulse features and some subjective characteristics.

    Keywords: Genetic algorithm, Persian medicine, thermal imaging, warm, cold temperament
  • فخرالدین صالحی*، محمدامین اسدنهال
    مقدمه
    محصولات غذایی سرخ شده با توجه به ویژگی های منحصربه فرد مانند رنگ، بو، طعم و بافت مطلوب بسیار مورد توجه می باشند. کنترل شرایط سرخ کردن و استفاده از پوشش های هیدروکلوییدی خوراکی (صمغ ها) یکی از روش های مناسب برای کاهش جذب روغن، حفظ رطوبت و بهبود خصوصیات ظاهری مواد غذایی سرخ شده است.مواد و روش ها: در این پژوهش از غلظت های مختلف صمغ دانه ریحان (0/0، 0.5، 1 و 1.5 درصد وزنی/وزنی) جهت پوشش دهی برش های بادمجان هنگام سرخ شدن عمیق در دماهای 150، 175 و 200 درجه سلسیوس استفاده گردید و رابطه بین پارامترهای فرآیند و خصوصیات محصول نهایی به روش الگوریتم ژنتیک- شبکه عصبی مصنوعی مدل سازی گردید.یافته ها: نتایج این پژوهش نشان داد که پوشش دهی با صمغ دانه ریحان باعث کاهش جذب روغن محصول نهایی شد. پیش تیمار پوشش دهی باعث حفظ رطوبت محصول نهایی شد و رطوبت نمونه پوشش داده شده با 5/1 درصد صمغ از سایر نمونه ها بیشتر بود (64.05%). این فرآیند توسط روش الگوریتم ژنتیک- شبکه عصبی مصنوعی با 2 ورودی شامل غلظت صمغ دانه ریحان و دمای سرخ کن و 5 خروجی شامل درصد روغن، مقدار رطوبت و سه شاخص اصلی رنگی (زردی (b*)، قرمزی (a*) و روشنایی (L*)) مدل سازی شد. نتایج مدل سازی نشان داد شبکه ای با تعداد 4 نرون در یک لایه پنهان و با استفاده از تابع فعال سازی تانژانت هیپربولیک می تواند خصوصیات فیزیکوشیمیایی برش های سرخ شده بادمجان را پیش بینی نماید.نتیجه گیری: پوشش حاوی 1.5 درصد صمغ دانه ریحان باعث حفظ رطوبت و کاهش جذب روغن توسط نمونه های سرخ شده گردید و این پوشش به عنوان پوشش خوراکی مناسب برای پوشش دهی برش های بادمجان قبل از فرآیند سرخ کردن، توصیه می شود. نتایج آزمون آنالیز حساسیت نشان داد که تغییر غلظت صمغ دانه ریحان بیشترین تاثیر را بر شاخص روشنایی و سپس بر روی مقدار روغن برش های بادمجان سرخ شده دارد. همچنین تغییر دمای سرخ کن نیز بیشترین تاثیر را بر شاخص روشنایی نمونه های سرخ شده داشت.
    کلید واژگان: الگوریتم ژنتیک، تابع تانژانت هیپربولیک، جذب روغن، شاخص روشنایی، شبکه عصبی مصنوعی
    F. Salehi *, M. A. Asadnahal
    Introduction
    Fried food products are very popular due to their unique characteristics such as color, smell, taste and desirable texture. Controlling frying conditions and using edible hydrocolloid coatings (gums) is one of the best methods to reduce the oil uptake, moisture retention, and improving the appearance properties of fried foods.
    Materials and Methods
    In this study, different concentrations of basil seed gum (0.0, 0.5, 1 and 1.5% w/w) were used to coat the eggplant slices during deep-frying at 150, 175 and 200°C and the relationship between process parameters and the quality of final product were modeled by genetic algorithm-artificial neural network method.
    Results
    The results of this study showed that coating with basil seed gum reduced the oil uptake of the final product. Coating pretreatment maintained the final product moisture and moisture content of the sample coated with 1.5% gum was higher than the other samples (64.05%). This process was modeled by genetic algorithm-artificial neural network method with 2 inputs that included basil seed gum concentration and frying temperature and 5 outputs that included oil percentage, moisture content, and three main color indexes (yellowness(b*), redness (a*), and lightness (L*)). The results of modeling showed that a network with 4 neurons in a hidden layer and using the hyperbolic tangent activation function can predict the physicochemical properties of fried eggplant slices.
    Conclusion
    The coating containing 1.5% of basil seed gum retained moisture content and reduced oil absorption by the fried samples, and this coating is recommended as a suitable edible coating for coating of eggplant slices before the frying process. Sensitivity analysis results showed that the changes in the concentration of basil seed gum had the highest effect on the lightness index and then on the oil content of fried eggplant slices. The change of frying temperature also had the highest effect on the lightness index of fried samples.
    Keywords: Artificial Neural Network, Genetic algorithm, Hyperbolic Tangent Function, Lightness Index, Oil Uptake
  • Soraya Mirzaei, Jafar Razmara*, Shahriar Lotfi
    Introduction

    Similarity analysis of protein structure is considered as a fundamental step to give insight into the relationships between proteins. The primary step in structural alignment is looking for the optimal correspondence between residues of two structures to optimize the scoring function. An exhaustive search for finding such a correspondence between two structures is intractable.

    Methods

    In this paper, a hybrid method is proposed, namely GADP-align, for pairwise protein structure alignment. The proposed method looks for an optimal alignment using a hybrid method based on a genetic algorithm and an iterative dynamic programming technique. To this end, the method first creates an initial map of correspondence between secondary structure elements (SSEs) of two proteins. Then, a genetic algorithm combined with an iterative dynamic programming algorithm is employed to optimize the alignment.

    Results

    The GADP-align algorithm was employed to align 10 ‘difficult to align’ protein pairs in order to evaluate its performance. The experimental study shows that the proposed hybrid method produces highly accurate alignments in comparison with the methods using exactly the dynamic programming technique. Furthermore, the proposed method prevents the local optimal traps caused by the unsuitable initial guess of the corresponding residues.

    Conclusion

    The findings of this paper demonstrate that employing the genetic algorithm along with the dynamic programming technique yields highly accurate alignments between a protein pair by exploring the global alignment and avoiding trapping in local alignments.

    Keywords: Bioinformatics, Protein structure alignment, Genetic algorithm, Dynamic programming
  • مهسا ایزد، کیوان معقولی*، خسرو جدیدی، فریدون نوشیروان راحت آباد
    هدف

    شناسایی بیماری کراتوکونوس از چشم سالم و هم چنین چشم مشکوک به بیماری.

    روش پژوهش

    پارامترهای معینی از دستگاه های OCT (کاسیا)، کرویس و پنتاکم برای سه گروه سالم، مبتلا به کراتوکونوس و مشکوک به کراتوکونوس استخراج شدند. این مطالعه بر روی 340 چشم مبتلا به کراتوکونوس، 310 چشم طبیعی و 350 چشم مشکوک به بیماری کراتوکونوس صورت گرفت. روش پردازش شامل هم جوشی ویژگی های استخراج شده از این سه دستگاه با استفاده از روش انتخاب ویژگی و الگوریتم ژنتیک (GA) بود و از روش های نرمالیزاسیون Z-score، حداقل-حداکثر، Softmax و مقدار حداکثر جهت نرمالیزه کردن پارامترها استفاده شد. طبقه بندهای مورد استفاده نیز ماشین بردار پشتیبان چندکلاسه (MSVM)، پرسپترون چندلایه (MLP) و K- نزدیک ترین همسایه (KNN) بودند. در روش GA، بهترین حالت در طبقه بندی MSVM و نرمالیزاسیون حداقل- حداکثر با متوسط صحت و انحراف معیار 5/2±5/87 درصد نشان داده شد.

    یافته ها

    نتایج جداسازی سه کلاس کراتوکونوس، مشکوک به کراتوکونوس و سالم با دو روش GA و MSVM با میانگین صحت و انحراف معیار 5/2±5/87 درصد را نشان داد.

    نتیجه گیری

    این مطالعه برتری روش تحلیل مولفه های اصلی را برای هم جوشی پارامترهای مشتق شده از سه دستگاه پنتاکم، کاسیا و کرویس و صحت MSVM را در جداسازی این سه کلاس مشخص کرد.

    کلید واژگان: الگوریتم ژنتیک، کراتوکونوس، هم جوشی پارامترها
    Izad M, Maghooli K*, Jadidi K, Nowshiravan Rahatabad F
    Purpose

    To diagnose keratoconus from healthy eyes, as well as suspected keratoconus.

    Methods

    Certain parameters were extracted from Casia, Corvis, and Pentacam HR devices for 3 groups of healthy, with keratoconus, and suspected keratoconus. This study was performed on 340 eyes with keratoconus, 310 normal eyes, and 350 suspected keratoconus. The processing method involved the fusion of features derived from 3 devices using optimal and superior feature selection method and Genetic Algorithm (GA). Common methods of z-score normalization, minimum-maximum, Softmax, and maximum value normalization were used to normalize the parameters. The classifiers used were also Multiclass Support Vector Machine (MSVM), Multilayer Perceptron (MLP), and K-Nearest Neighbor (KNN). In the GA method, the best case was shown in MSVM classification and minimum-maximum normalization with mean accuracy and a standard deviation of 87.5±2.5%.

    Results

    The results showed the separation of three classes of keratoconus, keratoconus suspected and healthy with two methods of GA and MSVM with mean accuracy and standard deviation of 2.5 ± 87.5%.

    Conclusion

    This result demonstrates the superiority of the principal component analysis method for the fusion of parameters derived from the three Pentacam HR, Casia, and Corvis ST devices and the robustness of the MSVM in separating these three classes.

    Keywords: Fusion of Features, Genetic Algorithm, Keratoconus
  • Zeinab Sazvar*, Mehrab Tanhaeean, Seyed Sina Aria, Amirhossien Akbari, Seyed Farid Ghaderi, Seyed Hossein Iranmanesh
    Aims

    Due to the terrible effects of 2019 novel coronavirus (COVID-19) on health systems and the global economy, the necessity to study future trends of the virus outbreaks around the world is seriously felt. Since geographical mobility is a risk factor of the disease, it has spread to most of the countries recently. It, therefore, necessitates to design a decision support model to i) identify the spread pattern of coronavirus and, ii) provide reliable information for the detection of future trends of the virus outbreaks.

    Material and Methods

    The present study adopts a computational intelligence approach to detect the possible trends in the spread of 2019-nCoV in China for a one-month period. Then, a validated model for detecting future trends in the spread of the virus in France is proposed. It uses the Artificial Neural Network (ANN) and a combination of ANN and Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Imperialist Competitive Algorithm (ICA) as predictive models.

    Finding

    The models work on the basis of data released from the past and the present days from World Health Organization (WHO). By comparing four proposed models, ANN and GA-ANN achieve a high degree of accuracy in terms of performance indicators.  

    Conclusion

    The models proposed in this study can be used as decision support tools for managing and controlling of 2019-nCoV outbreaks.

    Keywords: Coronavirus, Pandemic, Artificial Neural Network, Genetic Algorithm
  • Maryam Bayat Varkeshi, Kazem Godini, Mohammad Parsi Mehr *, Maryam Vafaee

    A reliable model for any wastewater treatment plant (WWTP) is essential to predict its performance and form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. This study applied artificial neural network-genetic algorithm (ANN-GA) and co-active neuro-fuzzy logic inference system (CANFIS) in comparison with ANN for predicting the performance of WWTP. The result indicated that the GA produces more accurate results than fuzzy logic technique. It was found that GA components increased the ANN ability in predicting WWTP performance. The normalized root mean square error (NRMSE) for ANN-GA in predicting chemical oxygen demand (COD), total suspended solids (TSS) and biochemical oxygen demand (BOD) were 0.15, 0.19 and 0.15, respectively. The corresponding correlation coefficients were 0.891, 0.930 and 0.890, respectively. Comparing these results with other studies showed that despite the slightly lower performance of the current model, its requirement for a lower number of input parameters can save the extra cost of sampling.

    Keywords: Artificial neural network, Wastewater, Fuzzy logic, Genetic algorithm
  • Sahar Hojjatinia, Mahdi Aliyari Shoorehdeli, Zahra Fatahi, Zeinab Hojjatinia, Abbas Haghparast*
    Introduction

    Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biologically-plausible models, i.e. capable of capturing most recognized firing patterns of neurons. This property makes the model efficient in simulating the large-scale networks of neurons. Improving the Izhikevich model for adapting with the neuronal activity of rat brain with great accuracy would make the model effective for future neural network implementations.

    Methods

    Data sampling from two brain regions, the HIP and BLA, was performed by the extracellular recordings of male Wistar rats, and spike sorting was conducted by Plexon offline sorter. Further analyses were performed through NeuroExplorer and MATLAB. To optimize the Izhikevich model parameters, a genetic algorithm was used. In this algorithm, optimization tools, like crossover and mutation, provide the basis for generating model parameters populations. The process of comparison in each iteration leads to the survival of better populations until achieving the optimum solution.

    Results

    In the present study, the possible firing patterns of the real single neurons of the HIP and BLA were identified. Additionally, an improved Izhikevich model was achieved. Accordingly, the real neuronal spiking pattern of these regions’ neurons and the corresponding cases of the Izhikevich neuron spiking pattern were adjusted with great accuracy. 

    Conclusion

    This study was conducted to elevate our knowledge of neural interactions in different structures of the brain and accelerate the quality of future large-scale neural networks simulations, as well as reducing the modeling complexity. This aim was achievable by performing the improved Izhikevich model, and inserting only the plausible firing patterns and eliminating unrealistic ones.

    Keywords: Izhikevich model, Firing pattern, Optimization, Genetic algorithm, Basolateral amygdala, Hippocampus
  • Sajad Shafiekhani, Mojtaba Shafiekhani, Sara Rahbar, Amir Homayoun JafarI*
    Background

    How to explore the dynamics of transition probabilities between phases of budding yeast cell cycle (BYCC) network based on the dynamics of protein activities that control this network? How to identify the robust structure of protein interactions of BYCC Boolean network (BN)? Budding yeast allows scientists to put experiments into effect in order to discover the intracellular cell cycle regulating structures which are well simulated by mathematical modeling.

    Methods

    We extended an available deterministic BN of proteins responsible for the cell cycle to a Markov chain model containing apoptosis besides G1, S, G2, M, and stationary G1. Using genetic algorithm (GA), we estimated the kinetic parameters of the extended BN model so that the subsequent transition probabilities derived using Markov chain model of cell states as normal cell cycle becomes the maximum while the structure of chemical interactions of extended BN of cell cycle becomes more stable.

    Results

    Using kinetic parameters optimized by GA, the probability of the subsequent transitions between cell cycle phases is maximized. The relative basin size of stationary G1 increased from 86% to 96.48% while the number of attractors decreased from 7 in the original model to 5 in the extended one. Hence, an increase in the robustness of the system has been achieved.

    Conclusion

    The structure of interacting proteins in cell cycle network affects its robustness and probabilities of transitions between different cell cycle phases. Markov chain and BN are good approaches to study the stability and dynamics of the cell cycle network.

    Keywords: Boolean network, budding yeast cell cycle, genetic algorithm, Markov chain model
  • ستایش صادقی، امین گلاب پور*
    مقدمه

    بیماری سرطان پستان یکی از شایع ترین انواع سرطان و شایع ترین نوع بدخیمی در زنان است که در سال های اخیر روند رو به رشدی داشته است. در مبتلایان به این بیماری همواره احتمال عود مجدد وجود دارد. عوامل زیادی میزان این احتمال را کاهش یا افزایش می دهند. داده کاوی از روش هایی است که در تشخیص یا پیش بینی سرطان ها به کار می رود و یکی از بیشترین کاربردهای آن، پیش بینی عود مجدد سرطان پستان است.

    روش

    در این مطالعه گذشته نگر از داده های 699 بیمار مبتلا به سرطان پستان با 14 ویژگی استفاده شد که از این تعداد 458 نفر (66 درصد) سرطان آن ها عود نکرد و 241 نفر (34 درصد) سرطان آن ها عود کرده است. این اطلاعات از سال 1391 تا 1394 از پرونده بیماران سرطان پستان جهاد دانشگاهی جمع آوری شد. در این پژوهش از ترکیب دو الگوریتم نزدیک ترین همسایگی و الگوریتم ژنتیک برای پیش بینی عود بیماران مبتلا به سرطان پستان استفاده گردید. ابتدا الگوریتم نزدیک ترین همسایگی برای پیش بینی عود سرطان پستان ارائه شد سپس به کمک الگوریتم ژنتیک متغیرهای وابسته کاهش یافت تا مدل صحت مناسب تری داشته باشد.

    نتایج

    تعداد متغیرهای وابسته 14 متغیر بود که به کمک الگوریتم ژنتیک به 6 متغیر کاهش پیدا نمود تا مدل پیش بینی کارایی بهتری داشته باشد. جهت ارزیابی مدل از پارامتر صحت استفاده شد که مقدار آن برای مدل پیشنهادی 14/77 درصد است که نسبت به روش های دیگر خروجی مناسب تری دارد.

    نتیجه گیری

    در این مطالعه الگوریتم پیشنهادی با روش های دیگر پیش بینی مورد بررسی قرار گرفت و مشخص گردید الگوریتم پیشنهادی دارای صحت بهتر است.

    کلید واژگان: عود سرطان پستان، الگوریتم ژنتیک، الگوریتم نزدیک ترین همسایگی
    Setayesh Sadeghi, Amin Golabpour*
    Introduction

    Breast cancer is one of the most common types of cancer and the most common type of malignancy in women, which has been growing in recent years. Patients with this disease have a chance of recurrence. Many factors reduce or increase this probability. Data mining is one of the methods used to detect or anticipate cancers, and one of its most common uses is to predict the recurrence of breast cancer.

    Cases and Methods

    Out of 699 patients with breast cancer, 458 (66%) of them did not relapse and 241 (34%) of their cancer recurred. This information was collected from 91 to 94 years of history of patients with breast cancer in the academic Jihad. In this study, the combination of two nearest neighboring algorithms and a genetic algorithm are proposed to predict the relapse of patients with breast cancer. First, the nearest neighboring algorithm is presented to predict the recurrence of breast cancer. Then, using the genetic algorithm, the dependent variables are reduced to make the model more appropriate.

    Results

    The number of dependent variables is 14 variables, which is reduced by 6 genetic algorithms to better predict the model. To evaluate the model, the health parameter is used, which is 77.14% for the proposed model, which could not be more suitable for other methods.

    Conclusion

    In this study, the proposed algorithm was examined with other predictive methods and it was determined that the proposed algorithm is better.

    Keywords: Breast Cancer Recurrence, Genetic Algorithm, Nearest Neighbor Algorithm
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال