به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

predictive model

در نشریات گروه پزشکی
  • Mozhgan Khalili, Pegah Farokhzad, Narges Babakhani
    Background

    Lifestyle and social health in fertility play a decisive role on mental health, and infertility is one of the unpleasant life experiences that can affect a person's mental health. In addition, marital satisfaction is also affected by infertility and plays an important role in the mental health of couples.

    Objectives

    In order to find the relationship between these factors mentioned in the "background" section, this study aimed to determine a predictive model of depression in infertile women based on lifestyle and social health components mediated by marital satisfaction.

    Methods

    The present study was a descriptive and correlational study in which 360 infertile women were selected based on the depression score obtained from the Beck questionnaire (score 8 and above). Then, social health, lifestyle, and marital satisfaction questionnaires were completed by the selected infertile women. Subsequently, the raw data obtained were analyzed using SPSS-Ver.22 and partial least squares (PLS)-Version 3 software. Finally, a predictive model was designed based on the relationship and correlation between the variables.

    Results

    The findings showed that there is a significant relationship between social health and depression (r = -0.55, P < 0.01), between social health and marital satisfaction (r = 0.48, P < 0.01), between social health and lifestyle (r = 0.52, P < 0.01), lifestyle and depression (r = -0.41, P < 0.01), between lifestyle and marital satisfaction (r = 0.59, P < 0.01), and between marital satisfaction and depression (r = -0.61, P < 0.01). Negative values of the above-mentioned correlations (r) indicate an indirect relationship and positive “r” values indicate a direct correlation.

    Conclusions

    Based on the results of the present research, the main hypothesis of this research was confirmed and it can be concluded that the model designed to predict the depression of infertile women based on lifestyle and social health components with the mediation of marital satisfaction is valid.

    Keywords: Infertile Women, Depression, Lifestyle, Social Health, Marital Satisfaction, Predictive Model
  • Fatemeh Estebsari, Marzieh Latifi, Marjan Moradi Fath, Arezoo Sheikh Milani, Maliheh Nasiri, Zahra Rahimi Khalifeh Kandi
    Introduction

    Mistreatment of elderlies is a global concern in the field of public health and human rights. The primary objective of this study was to identify and analyze risk factors associated with elder abuse through the use of a regression model. The present cross-sectional study was conducted to determine the predictors of elder abuse in Tehran, the number of samples was calculated 425.

    Methods

    Demographic Information Questionnaire and the Elderly Abuse Questionnaire with 49 items were used for this purpose. The Cronbach’s alpha was calculated 0.85 for the abuse in overall. Using univariate and multivariate linear regression models at a confidence interval of 0.95%.

    Results

    The mean ± SD age of the participants was 67.44±8.01 years. Approximately 68.7% of the participants were male, while 31.3% were female. The results indicate that emotional abuse had the highest frequency of occurrence among the elderly, whereas physical abuse had the lowest. Among the factors studied, the living companion of the elderly (p< 0.001), education level (p< 0.001), financial independence (p< 0.001), and health status (p< 0.001) were found to be predictors of elder abuse.

    Conclusions

    As demographic variables have been identified as risk factors for elder abuse, it is recommended that social welfare organizations, care systems, and policymakers implement measures to develop plans and programs aimed at reducing the risk of elder abuse, preventing it at the community level, and addressing barriers related to the improvement of demographic variables.

    Keywords: Eldery, Elder Abuse, Risk Factors, Predictive Model
  • Hossein Jalali, Ahmad Najafi, Lotfollah Davoodi, Abbas Alipour, Mohammad Reza Mahdavi*
    Background

    The COVID-19 pandemic has rapidly spread and remained poorly understood by clinicians. The present work aimed to study the association between laboratory biomarkers, prognosis, and disease severity.

    Methods

    This is a single-center cohort study. We included young patients admitted at Razi Hospital, Ghaemshar City, Iran, from April 2020 to June 2020, whose diseases were confirmed with reverse transcription real time-PCR (rRT-PCR) test. Laboratory biomarkers were analyzed on the same day of inpatient service and after five days of hospitalization. The patients’ results and the outcomes were compared with those of the control group.

    Results

    In the present study, 70 patients were investigated; 53 were discharged, and 17 died. A significant correlation was observed between patients and healthy subjects in some laboratory biomarkers: C-reactive protein (CRP), lactate dehydrogenase (LDH), total protein level, albumin level, and absolute lymphocyte count. Furthermore, CRP, LDH, total protein, albumin, absolute lymphocyte count, 25-OH vitamin D, interleukin (IL)-6, ferritin, and D-dimer levels in patients with different outcomes had significant correlations. High CRP, LDH, IL-6, ferritin, and D-dimer were predictive of mortality (area under the curve >0.70), as were low absolute lymphocyte count and 25-OH vitamin D. After adjusting age, CRP, albumin, WBC, D-dimer, LDH, and 25 OH-vitamin D, the final model of multiple binary logistic regressions with IL-6 and ferritin had high accuracy for the prediction of fatal outcome.

    Conclusion

    This finding would facilitate the early stratification of hospitalized patients with COVID-19 and help make clinical decisions.

    Keywords: COVID-19, Laboratory Biomarkers, Prognostic Value, Predictive Model
  • Elham Hosseinalizadeh, Robab Mehdizadeh Esfanjani, Haniyeh Ebrahimi Bakhtavar, Farzad Rahmani
    Background

    It is of prime importance to manage trauma patients in the early hours and use easy trauma severity scoring systems to make decisions and evaluate patient prognosis.

    Objectives

    The present study aimed to design a predictive model of the mortality of multi-trauma patients due to traffic accidents.

    Methods

    This cross-sectional analytical study was performed on 600 patients who suffered from multi-trauma caused by traffic accidents from December 2019 to September 2021. Collected data included age, sex, vital signs, trauma mechanism, involved vehicle in the accident, accident location, and hospital outcome.

    Results

    In this study, 600 multi-trauma cases caused by traffic accidents were evaluated. Among the significant variables included in the regression model, age, Mean Arterial Pressure (MAP), Glasgow Coma Scale (GCS), AVPU (Alert, Verbal response, Pain response, Unresponsive), and vehicle versus fixed objects (in Vehicle 2) in the presence of other variables in the model, significantly predictedpatient outcomes. Therefore, with the other variables being constant, one unit increase in the age variable increases the probability of death by 1.04 times, one unit increase in the score of the two variables of MAP and GCS, and also the transfer of trauma mechanism from the fixed object to the vehicle reduces death by 0.92, 0.62, and 0.10 times, respectively. In the AVPU variable, the transition from Alert to Verbal, the transition from Verbal to Pain, and the transition from Pain to Unresponsive increases the probability of death by 32, 104, and 567, respectively.

    Conclusion

    In this study, AVPU, age, MAP, primary GCS, and trauma mechanism due to hitting a vehicle with a fixed object had significantly the highest predictive power of hospital mortality in patients with multiple trauma due to traffic accidents, respectively. It is suggested that further studies be performed to replace the AVPU variable with GCS in the newly designed formulas for calculating the severity of trauma to simplify these scores.

    Keywords: Mortality, Multiple trauma, Outcome, Predictive model, Traffic accidents
  • مجتبی ذکایی، مرضیه صادقیان، محسن فلاحتی، اعظم بیابانی*
    مقدمه

    به دلیل افزایش ارایه خدمات الکترونیک به شهروندان در ادارات دولتی، تعداد کاربران کامپیوتر و در نتیجه بروز اختلالات اسکلتی عضلانی افزایش یافته است. لذا هدف این مطالعه پیش بینی و مدلسازی روابط پیچیده بین عوامل خطر اختلالات اسکلتی عضلانی در کاربران کامپیوتر شاغل در ادارات دولتی توسط شبکه عصبی مصنوعی بود.

    روش کار

    مطالعه مقطعی حاضر در سال 2020 روی 342 نفر از کارکنان ادارات مختلف دولتی شهر ساوه در ایران انجام گردید. ابتدا محقق به منظور شناسایی اولیه مشکلات از محیط کار بازدید نموده و عوامل محیطی را اندازه گیری کرد. با استفاده از پرسشنامه نوردیک و روش ROSA، ارزیابی ریسک ارگونومیک و بررسی عوامل روانی اجتماعی صورت پذیرفت. بمنظور تدوین مدل، تاثیر عوامل مختلف در ایجاد اختلالات اسکلتی عضلانی با استفاده از آزمون رگرسیون لجستیک بررسی شد، سپس داده های حاصل توسط یکی از الگوریتم های شبکه عصبی جمع آوری و مدل سازی گردید و در نهایت یک مدل بهینه برای پیش بینی خطر اختلالات اسکلتی عضلانی توسط شبکه های عصبی مصنوعی ارایه شد.  

    یافته ها

    نتایج نشان داد با افزایش سطح تعاملات اجتماعی، سطح تقاضا، کنترل و رهبری در شغل، اختلالات اسکلتی عضلانی در مردان و زنان کاهش می یابد. بین شیوع اختلالات اسکلتی-عضلانی و میزان تقاضای شغل، سطوح کنترل شغل، سطوح تعاملات اجتماعی، سطوح رهبری، سطوح جو سازمانی، سطح رضایت شغلی و سطوح استرس رابطه معناداری وجود داشت. علاوه بر این، بین گزارش درد در ناحیه گردن، شانه و مچ/دست با نمره کلی ROSA رابطه معناداری وجود داشت. همچنین بین گزارش درد یا ناراحتی در ناحیه گردن با امتیاز خطر صفحه نمایش گوشی، مچ/دست با نمره خطر صفحه کلید-موس و همچنین شانه، قسمت بالای کمر، آرنج و پایین کمر با نمره ریسک صندلی رابطه معنادار وجود داشت. دقت مدل ارایه شده جهت پیش بینی اختلالات اسکلتی عضلانی نیز حدود 5/88 % بود که نشان دهنده قابل قبول بودن نتایج است.

    نتیجه گیری

    نتایج نشان داد چندین فاکتور در ایجاد اختلالات اسکلتی عضلانی نقش دارند که شامل عوامل فردی، محیطی، روانی اجتماعی و ایستگاه کاری می باشد. لذا در طراحی یک ایستگاه کاری ارگونومیک بایستی تاثیر توام عوامل ذکر شده مورد بررسی قرار گیرد. همچنین پیش بینی میزان تاثیرگذاری هر کدام از عوامل مذکور با استفاده از شبکه عصبی مصنوعی نشان داد که این نوع مدلسازی می تواند به عنوان ابزاری جهت پیشگیری از اختلالات اسکلتی عضلانی و یا دیگر اختلالات چندعاملی کاربردپذیر باشد.

    کلید واژگان: مدل پیش بینی کننده، MSDS، شبکه عصبی مصنوعی، رایانه
    Mojtaba Zokaei, Marzieh Sadeghian, Mohsen Falahati, Azam Biabani*
    Introduction

    Due to the increase in the provision of electronic services to citizens in government offices, the number of computer users and the occurrence of musculoskeletal disorders have increased. Therefore, this study aimed to predict and model the complex relationships between the risk factors of musculoskeletal disorders in computer users working in government offices by an artificial neural network.

    Material and Methods

    The current cross-sectional study was conducted in 2020 on 342 employees of various government offices in Saveh city. First, the researcher visited the work environment to identify the problems and measure the environmental factors. Then, ergonomic risk assessment and psychosocial factors were evaluated using the Nordic questionnaire and the ROSA method. The effect of various factors in causing musculoskeletal disorders was investigated using a logistic regression test.Then the resulting data were collected and modeled by one of the neural network algorithms. Finally, artificial neural networks presented an optimal model to predict the risk of musculoskeletal disorders.

    Results

    The results showed that by increasing the level of social interactions, the level of demand, control, and leadership in the job, musculoskeletal disorders in men and women decrease. There was a significant relationship between the prevalence of musculoskeletal disorders and job demand, job control levels, social interaction levels, leadership levels, organizational climate levels, job satisfaction levels, and stress levels, in addition between reports of pain in the neck and shoulder and wrist/hand region. There was a significant relationship with the overall ROSA score. Also, there was a significant relationship between the report of pain or discomfort in the neck area with the phone screen risk score, wrist/hand with the keyboard-mouse risk score, and shoulder, upper back, elbow, and lower back with the chair risk score. The accuracy of the presented model for predicting musculoskeletal disorders was also about 88.5%, which indicates the acceptability of the results.

    Conclusion

    The results showed that several factors play a role in causing musculoskeletal disorders, which include individual, environmental, psychosocial, and workstation factors. Therefore, in the design of an ergonomic workstation, the effects of the mentioned factors should be investigated. Also, predicting the effectiveness of each of the mentioned factors using an artificial neural network showed that this type of modeling can be used to prevent musculoskeletal disorders or other multifactorial disorders.

    Keywords: Predictive model, MSDS, Artificial neural network, Computer
  • Farida Iskakova*, Zhazira Utepbergenova, Saltanat Mamyrbekova, Anar Daniyarova, Zhanar Zhagiparova, Zinat Abdrakhmanova, Elmira Auyezova
    Background

    The COVID-19 pandemic affected educational institutions and caused the transfer to distance learning. The study aimed to assess medical students' satisfaction with synchronous distance learning (SDL) during the pandemic and predict their choice of it in the future.

    Methods

    A cross-sectional study was conducted among undergraduate medical students at the Al-Farabi Kazakh National University in July 2021. An online questionnaire was used to collect data on demographic and educational characteristics, satisfaction, and perspective on the future choice of SDL. IBM SPSS Statistics, version 26, was used to analyze the qualitative data on descriptive and inferential statistics.

    Results

    Students' satisfaction and future choice of SDL were 43.2% and 20.2%, respectively. Regression analysis revealed the significance of SDL predictors with a direct relationship in the case of gender and academic performance and predictors with an inverse relationship in the case of residency, student life satisfaction, and SDL with student satisfaction. In the predictive model, student satisfaction and probability of future choice of SDL over traditional learning were 59.5% and 43.5%, respectively; over hybrid learning, it was 20.2% of students.

    Conclusion

    The research findings suggested that slightly less than half of the respondent medical students were satisfied by distance learning during the COVID-19 pandemic when their satisfaction probability was significantly higher in the predictive model. The predictive model of perspective of choice of distance learning did not show statistically significant results compared with traditional and hybrid learning.

    Keywords: COVID-19, Synchronous Distance Learning, Satisfaction, Predictive Model, Medical Students, Academic Performance
  • امین بیگلرخانی، رضوان عباسی*، محمدرضا ثنایی
    زمینه و هدف

    در سال های اخیر، مدیریت زنجیره تامین دارو، به ویژه پس از همه گیری بیماری کووید-19 اهمیت بیشتری پیدا کرده است. در این مدت یکی از چالش های مهم مساله کنترل هزینه زنجیره تامین است. اگر موجودی دارو در بیمارستان ها به درستی مدیریت نشود، مشکلاتی مانند کمبود موجودی برخی داروهای حیاتی، تامین موجودی مازاد، افزایش هزینه ها و درنهایت نارضایتی بیماران را به دنبال خواهد داشت.

    مواد و روش ها

    در این پژوهش سعی شده است تا با استفاده از الگوریتم های یادگیری عمیق، نیازهای دارویی بیمارستان های کشور را پیش بینی و مدیریت کنیم. داده های مصرف دارویی ده سال بیمارستان عمومی بعثت همدان از پایگاه داده های سامانه مدیریت بیمارستان استخراج شده است. به عنوان یک مطالعه موردی، عملکرد مدل پیشنهادی برای پیش بینی میزان مصرف سفازولین ارزیابی شده است. این مدل شامل یک شبکه حافظه طولانی کوتاه مدت می باشد که می تواند پیشینه تغییرات داده ها را در کاربردهای پیش بینی سری های زمانی تشخیص دهد. مدل پیشنهادی با وجود تعداد زیادی پارامترهای تطبیق پذیر در شبکه های عصبی عمیق عملکرد خوبی را برای غلبه بر پیچیدگی های مسیله یادگیری به ارمغان می آورد.

    نتایج

    استفاده از رویکرد یادگیری عمیق پیشنهادی با کاهش اثرات پیچیدگی و عدم قطعیت در داده های پزشکی، استحکام الگوریتم را افزایش داده است. میانگین خطای پیش بینی با به کارگیری روش پیشنهادی 043/0 و مقادیر اندازه گیری شده برای RMSE، MAE و R2  به ترتیب برابر با 335/0، 260/0 و 851/0 است.

    نتیجه گیری

    مقایسات جامعی بین برخی از سایر روش های پیش بینی و مدل پیشنهادی انجام شده است، که عملکرد بهتر مدل پیشنهادی را نشان می دهد. علاوه براین، نتایج ارزیابی دقت و کارایی قابل قبول رویکرد پیشنهادی را به خوبی نشان می دهد.

    کلید واژگان: زنجیره تامین دارو، مدل پیش بینی کننده، یادگیری عمیق، حافظه طولانی کوتاه مدت
    Amin Biglarkhani, Rezvan Abbasi*, Mohammadreza Sanaei
    Background and Objectives

    In recent years, medicine supply chain management has become more significant, especially after the Covid-19 pandemic. The most important issue is supply chain cost control. If the drug inventory is not properly managed, it will lead to issues such as the lack of inventory of certain drugs, provision of excess inventory, increased costs, and, finally, patient dissatisfaction.

    Materials and Methods

    In this study, an attempt has been made to predict and manage the pharmaceutical needs of hospitals using an efficient deep-learning algorithm. The drug consumption data for ten years of Besat General Hospital in Hamedan are extracted from the HIS database. As a case study, the accuracy of the predictive model is evaluated, especially for cefazolin. We use a deep model to analyze the medical time-series data efficiently. This model consists of a Long Short-Term Memory network, which can sufficiently recognize the change history in time-series prediction applications. The proposed model with many adjustable parameters in the deep architecture will bring good performance to overcome the complexities of the learning problem.

    Results

    Using the deep learning method can increase robustness by reducing the effects of complexity and uncertainty in medical data. The average forecasting error for the proposed method is 0.043, and the measured values for RMSE, MAE, and R2  are 0.335, 0.260, and 0.851, respectively.

    Conclusion

    A comprehensive comparison between some other predictive methods and the implemented model shows the outperformance of the proposed approach. Additionally, the evaluation results indicate the efficiency of the proposed approach.

    Keywords: Medicine Supply Chain, Predictive model, Deep learning, Long Short-Term Memory
  • Antibiotic Consumption Forecasting using a Combinatorial Convolutional Neural Network with Long Short-Term Memory Model
    Amin Biglarkhani, Rezvan Abbasi *, Mohammad Reza Sanaei
    Background and Objectives

    In recent years, medicine supply chain management has become more significant, especially after the Covid-19 pandemic. The most important issue is supply chain cost control. Medicine costs include nearly 30% of hospital expenses. If the drug inventory is not properly managed, it will lead to issues such as the lack of inventory of certain drugs, provision of excess inventory, increased costs, and, finally, patient dissatisfaction.

    Method

    In this study, an attempt has been made to predict and manage the pharmaceutical needs of hospitals using artificial neural networks and deep learning algorithms. The prescription and consumption information of one of the general hospitals in Hamedan city from 2013 until 2017 was extracted from the HIS databases. Since most drugs have different and specific characteristics and it is impossible to create the same prediction model for all drugs, the employed dataset is limited to the category of antibiotics. As a case study, the accuracy of the predictive model is evaluated, especially for cefazolin. We use a deep model to analyze the medical data time series efficiently. This model consists of two parts, a Convolutional Neural Network and a Long Short-Term Memory network (LSTM), which can sufficiently recognize the change history in time series prediction applications. The proposed model with many adjustable parameters in convolutional neural networks will bring good performance to overcome the complexities of the learning problem.

    Results

    Using deep learning in the training process can increase robustness by reducing the effects of complexity and uncertainty in medical data. Eventually, the prediction evaluation results and analytical criteria such as forecasting error and convergence speed and some statistical tests like R^2, MAE, and RMSE were presented. The average forecasting error for the proposed method is 0.028, and the measured values for RMSE, MAE, and R^2 are 0.095, 0.081, and 0.788, respectively.

    Conclusion

    A comprehensive comparison between some other predictive methods and the implemented model shows the outperformance of the proposed approach. Additionally, the evaluation results indicate the efficiency of the proposed approach.

    Keywords: Medicine Supply Chain, Predictive model, Convolutional Neural Networks, Deep Learning
  • Xiangyu Wang, Yinqi GAO, Xue Yang, Xiangyi Kong, Zixing WANG, Yi Fang, Jing Wang*
    Background

    Omitting axillary lymph node dissection (ALND) is recommended for early-stage breast cancer patients with 1-2 sentinel lymph nodes (SLNs) macro-metastases and breast-conserving therapy. However, it is not safe for part of patients, so it is significant to find risk factors and develop a predictive model of non-SLNs metastases in breast cancer patients with 1-2 SLNs macro-metastases and breast-conserving therapy.

    Methods

    This retrospective study enrolled 228 breast cancer patients with 1-2 SLNs macro-metastases who underwent ALND and breast-conserving surgery between Jan 2012 and Dec 2017 at Cancer Hospital Chinese Academy of Medical Sciences. Chi-square test and backward stepwise binary logistic regression were used to find factors that influenced non-SLN metastases, then a predictive model was formulated and obtained its area under the curve.

    Results

    Tumor pathologic invasion size, number of positive SLNs and ALN status on imaging was associated with non-SLNs metastases. The predictive model was also formulated based on these three factors to assess and the area under the curve of model was 0.708.

    Conclusion

    We developed a predictive model to assess the high-risk cohort of patients of non-SLNs metastases which can be an auxiliary tool for doctors.

    Keywords: Breast cancer, Risk-factors, Predictive model, Macro-metastases, Breast-conserving surgery
  • پرنیان عسگری، علیرضا آتشی، مرضیه معراجی*، میرمحمد میری
    هدف

    حجم عظیمی از داده ها در بخش مراقبت های ویژه تولید می شود، به نظر می رسد داده کاوی راهکار مناسبی برای استفاده ی بهینه از منابع باشد. شناسایی و تحلیل عوامل پرخطر مرتبط با مرگ ومیر، منجر به برنامه ریزی کاراتر و دقیق تر جهت بستری و انجام مداخلات خواهد شد. این پژوهش باهدف استفاده از تکنیک های داده کاوی جهت پیش بینی مرگ ومیر در بخش مراقبت ویژه صورت گرفته است.

    روش ها:

    این پژوهش به روش مقطعی بر روی اطلاعات838 بیمار بستری در بخش مراقبت های ویژه عمومی بین سال های 91 تا97 در بیمارستان امام حسین (ع) تهران انجام گردید. . الگوریتم هایی ماشین بردار پشتیبانی،Kنزدیک ترین همسایه، درخت تصمیم، جنگل تصادفی و رگرسیون لجستیک جهت داده کاوی استفاده گردید. مراحل انجام داده کاوی طبق مدل کریسپ در پنج مرحله صورت گرفت. ارزیابی مدل بر اساس صحت، دقت، ویژگی، حساسیت و سطح زیر منحنی راک گزارش گردید.

    نتایج

    در ابتدا پس از بررسی متون،27 فاکتور تاثیرگذار مشخص و در نهایت 26 فاکتور برای انجام تکنیک ها مورد استفاده قرار گرفت. از میان الگوریتم های منتخب که در مطالعه استفاده گردید، الگوریتم رگرسیون لجستیک بر اساس سطح زیر منحنی راک 76/0))، صحت (62/75)، دقت (39/68)، حساسیت (65/38) ویژگی(53/94) عملکرد بهتری در پیش بینی مرگ ومیر نسبت به سایر الگوریتم های مطالعه داشت. در ضمن متغیرهای گلوکز و زمان نسبی ترومبوپلاستین بیشترین تاثیر را بر مرگ و میر بر اساس مدل رگرسیون لجستیک داشت.

    نتیجه گیری:

     تجزیه و تحلیل داده های موجود در بیماران بخش مراقبت های ویژه می تواند ابزاری مناسب و کاربردی برای پیش بینی مرگ ومیر و عوامل مرتبط با آن باشد اما با توجه به کیفیت داده ها نتایج متفاوت می باشد با این حال فرآیندها و روش های ذکرشده در این مطالعه بیان می کند که قوانین استخراج شده از رگرسیون لجستیک می تواند به عنوان الگویی برای پیش بینی وضعیت مرگ ومیر در بخش مراقبت های ویژه مورد استفاده قرار گیرد.

    کلید واژگان: مرگ ومیر، داده کاوی، بخش مراقبتهای ویژه، مدل پیش بینی
    Parnian Asgari, Alireza Atashi, Marziyeh Meraji*, Mirmohammad Miri
    Aim

    Intensive Care Unit (ICU) is a ward that is critical to improving the health status of critical conditions. Data mining seems to be a good way to optimize the use of resources. Identifying and analyzing the risk factors associated with mortality will lead to more efficient and accurate planning of hospitalization and interventions. In this study, the prediction of mortality of patients in the intensive care unit of Imam Hossein Hospital in Tehran with data mining techniques is discussed.

    Methods

    Based on patient records and hospital information system, 838 patients admitted to the General intensive care unit between 2013 and 2019 in Imam Hossein Hospital in Tehran, the data is needed to collect this research. Algorithms used to classify patients include support vector machines, k nearest neighbor, decision tree, logistic regression and random forest that was reported based on the precision, accuracy, sensitivity, specificity, and roc under the curve.

    Results

    The results of this study showed, identified 26 factors affecting specific data and pre-processing of data. Among five of the algorithms used in the study, logistic regression algorithm based on the level of roc curve (0.76), accuracy percentage (75.62),precision (68.39),sensitivity (38.65) and specificity (94.53) had better performance in predicting mortality compared to other techniques of study. The variables of Glucose and Partial Thromboplastin time were the most significant effects on mortality based on the logistic regression model.

    Conclusion

    Data analysis in intensive care unit patients can be an appropriate and practical tool for predicting mortality and its related factors, but according to the quality of data, results are different. And the results extracted from logistic regression can be used as a model to predict the status of mortality in the intensive care unit.

    Keywords: Mortality, data mining, intensive care unit, predictive model
  • Hayedeh Hoorsan, Hamid Alavi Majd, Shahla Chaichian *, Abolfazl Mehdizadehkashi, Roza Hoorsan, Meisam Akhlaqghdoust, Yousef Moradi
    Background
    Adverse pregnancy outcome are frequent in developing countries. Pregnancy outcomes are influenced by numerous factors. It seems that maternal anthropometric indices are among the most important factors in this era. The aim of this study was to determine any association between maternal anthropometric characteristics and adverse pregnancy outcomes in Iranian women and provide a predictive model by using factors affecting birth weight (BW) via the pathway analysis.
    Methods
    This study was performed in Alborz province between September 2014 and December 2016. In this cross-sectional study, 1006 pregnant women who had the study criteria were selected from 1500 pregnant women. The data were collected in 2 phases: at their first prenatal visit and during the postpartum period. Demographic data, history of previous pregnancy, fundal height (FH), gestational weight gain (GWG), and abdominal circumference (AC) were recorded. Pathway (path) analysis was used to assess effective factors on pregnancy outcomes.
    Results
    The mean and standard deviation of participant age at delivery was 25.97 ± 5.71 years. Overall, 4.6% of infants were low BW (LBW) and 5.8% had macrosomia. The final model, with a good fit accounting for 22% of BW variance, indicated that AC and FH (both P
    Conclusion
    Based on the path analysis model, FH and AC of neonates with the greatest impact on BW, could be predicted by mother’s BMI before pregnancy and weight gain during pregnancy. Therefore, close observation during prenatal care can reduce the risk of abnormal BW.
    Keywords: BMI, Maternal anthropometric, Predictive model, Pregnancy outcome, Pregnant women
  • Fakhradin Ghasemi, Omid Kalatpour, Abbas Moghimbeigi, Iraj Mohammadfam
    The construction industry is notorious for having an unacceptable rate of fatal accidents. Unsafe behavior has been recognized as the main cause of most accidents occurring at workplaces, particularly construction sites. Having a predictive model of safety behavior can be helpful in preventing construction accidents. The aim of the present study was to build a predictive model of unsafe behavior using the Artificial Neural Network approach.
    A brief literature review was conducted on factors affecting safe behavior at workplaces and nine factors were selected to be included in the study. Data were gathered using a validated questionnaire from several construction sites. Multilayer perceptron approach was utilized for constructing the desired neural network. Several models with various architectures were tested to find the best one. Sensitivity analysis was conducted to find the most influential factors.
    The model with one hidden layer containing fourteen hidden neurons demonstrated the best performance (Sum of Squared Errors=6.73). The error rate of the model was approximately 21 percent. The results of sensitivity analysis showed that safety attitude, safety knowledge, supportive environment, and management commitment had the highest effects on safety behavior, while the effects from resource allocation and perceived work pressure were identified to be lower than those of others.
    The complex nature of human behavior at workplaces and the presence of many influential factors make it difficult to achieve a model with perfect performance.
    Keywords: Safety Behavior, Multilayer Perceptron, Artificial Neural Network, Predictive Model, Safety Attitude, Safety Knowledge
  • علیرضا زرین آرا، محمد مهدی آخوندی، حجت زراعتی، کورش کمالی*، کاظم محمد
    زمینه و هدف
    حدود بیست و پنج سال است که مدل های پیش بینی کننده درمان ناباروری وارد عرصه سلامت شده اند. برای تولید و کاربرد مدل های پیش بینی کننده، اصول علمی وجود دارد که جهت طراحی مدل پیش بینی موفقیت درمان ناباروری نیز به کار می روند. هدف از این مطالعه، فراهم آوردن اطلاعات پایه برای تدوین مدل پیش بینی کننده موفقیت درمان ناباروری است.
    مواد و روش ها
    در این مقاله، ابتدا اصول تدوین مدل پیش بینی کننده توضیح داده شده و سپس ضمن بیان جزئیات بیشتر طراحی این مدل ها با ذکر مثالی که مربوط به درمان های ناباروری است، شرح داده می شود.
    یافته ها
    شناسایی و تعریف هدف و کارکرد مدل، اطلاعات ورودی که برای تدوین مدل از آن ها استفاده خواهد شد، نوع مداخله یا اقدام تشخیصی که موجب تغییرات در نمونه می شود و مشخص بودن تعریف خروجی یا برون داد یا نتیجه ای که از کارکرد مدل مورد انتظار است، مهم ترین اصولی هستند که در قسمت اول توضیح داده شده و خصوصیات عوامل پیش گو در مدل نهایی، رسم روند نمای تهیه اطلاعات جمعیت هدف، اعتبار سنجی درونی و بیرونی و توجه به برنامه تحلیل نتایج از موارد مهمی هستند که در ادامه شرح داده می شود.
    نتیجه گیری
    استفاده مناسب از مدل های پیش بینی کننده می تواند بیماران و درمان گر را در انتخاب روش درمانی مناسب یاری کند.
    کلید واژگان: مدل پیش بینی کننده، درمان ناباروری، موفقیت درمان
    Alireza Zarinara, Mohammad Mahdi Akhondi, Hojjat Zeraati, Koorsh Kamali *, Kazem Mohammad
    Background
    The prediction models for infertility treatment success have presented since 25 years ago. There are scientific principles for designing and applying the prediction models that is also used to predict the success rate of infertility treatment. The purpose of this study is to provide basic principles for designing the model to predic infertility treatment success.
    Materials And Methods
    In this paper, the principles for developing predictive models are explained and then the design of such models in infertility treatments is described in more details by explaining one sample.
    Results
    The important principles for models that firstly are described are: identifying and defining the purpose, expected function of model, input data that will be used to develop a model: type of intervention or diagnostic procedures that can lead to changes in the samples and output definition or expected result of model function. Further, characteristics of predictive factors in final model, drawing the information flowchart, internal and external validation and attention to the analysis programme of results are the important subjects that have been described.
    Conclusion
    If predictive models are used properly, can help treatment team and patients to achive best treatment in ART.
    Keywords: Predictive model, Infertility treatment, Treatment success
  • Prediction of the Wrist Joint Position during a Postural Tremor Using Neural Oscillators and an Adaptive Controller
    Hamid Reza Kobravi, Sara Hemmati Ali, Masood Vatandoust, Rasoul Marvi
    The prediction of the joint angle position, especially during tremor bursts, can be useful for detecting, tracking, and forecasting tremors. Thus, this research proposes a new model for predicting the wrist joint position during rhythmic bursts and inter‑burst intervals. Since a tremor is an approximately rhythmic and roughly sinusoidal movement, neural oscillators have been selected to underlie the proposed model. Two neural oscillators were adopted. Electromyogram (EMG) signals were recorded from the extensor carpi radialis and flexor carpi radialis muscles concurrent with the joint angle signals of a stroke subject in an arm constant‑posture. The output frequency of each oscillator was equal to the frequency corresponding to the maximum value of power spectrum related to the rhythmic wrist joint angle signals which had been recorded during a postural tremor. The phase shift between the outputs of the two oscillators was equal to the phase shift between the muscle activation of the wrist flexor and extensor muscles. The difference between the two oscillators’ output signals was considered the main pattern. Along with a proportional compensator, an adaptive neural controller has adjusted the amplitude of the main pattern in such a way so as to minimize the wrist joint prediction error during a stroke patient’s tremor burst and a healthy subject’s generated artificial tremor. In regard to the range of wrist joint movement during the observed rhythmic motions, a calculated prediction error is deemed acceptable.
    Keywords: Neural oscillator, predictive model, tremor burst, wrist joint angle position
  • حسام کریم*، سیدمحمود تارا، کبری اطمینانی
    مقدمه
    طول مدت اقامت در بیمارستان یا Length of Stay) LOS) به عنوان یک برآوردگر غیر مستقیم از مصرف منابع و بهره وری در داخل بیمارستان به کار می رود. شناسایی عوامل مرتبط با این شاخص جهت بهره بردای بهینه از منابع، ارزشمند می باشد. مطالعه حاضر با هدف بررسی عوامل مرتبط با LOS به صورت مرور سیستماتیک انجام شد.
    روش
    در این پژوهش که به صورت مرور سیستماتیک انجام شده است، مطالعات با استفاده از عبارات جستجوی تعریف شده و با استفاده از پایگاه های فارسی و خارجی مشخص، در عنوان مقالات و بدون بازه زمانی بازیابی گردید. مقالات بر اساس تطابق با معیارهای ورود و خروج انتخاب و اطلاعات مورد نیاز جهت بررسی از آن ها استخراج و وارد نرم افزار اکسل نسخه 2010 گردید.
    نتایج
    از بین 347 مقاله به دست آمده، 18 مقاله انتخاب گردید. این مطالعات، چهار دسته عوامل بالینی، دموگرافیک، مدیریتی و بیمارستانی را به عنوان عوامل مرتبط با LOS معرفی نموده اند. همچنین روش های به کار رفته برای تعیین این عوامل شامل تکنیک های آماری و داده کاوی مانند رگرسیون درخت تصمیم و شبکه های عصبی مصنوعی بود. هدف تمام مطالعات، ایجاد مدلی جدید برای تعیین فاکتورهای مرتبط با LOS و یا ارزیابی مدل های معرفی شده در مطالعات دیگر بود.
    نتیجه گیری
    یافته های این مطالعات نشان می دهد، تعیین عوامل مرتبط با طول مدت اقامت، براساس محل جمع آوری داده، متغیرهای مورد مطالعه و تکنیک داده کاوی مورد استفاده می تواند متغیر باشد، لذا پیشنهاد می گردد پژوهشگران این حوزه در جهت شناسایی و کاهش عوامل مرتبط با طول مدت اقامت، مدیران و برنامه ریزان بیمارستانی را یاری نمایند.
    کلید واژگان: عوامل مرتبط، طول مدت اقامت، مدل پیش بینی، داده کاوی
    Hesam Karim*, Seyed Mahmood Tara, Kobra Etminani
    Introduction
    The Length of Stay (LOS) in the hospital is used as an indirect indicator of resources consumption and efficiency in hospitals. Identifying factors associated with this systematic review can be valuable in planning to optimize the utilization of the existing resources. The goal of the present study was to investigate factors associated with length of stay and it has been conducted as a systematic review.
    Method
    In this systematic review, papers were retrieved by the use of specified key terms in their titles and no restricted time in Persian and English databases. Papers were selected according to how they were in line with the criteria for inclusion and exclusion and finally, information were extracted and entered to Excel 2010 software for analysis.
    Results
    18 articles out of 347 were selected. These studies introduced four criteria associated with length of stay including clinical, demographic, administrative, and hospital factors. Applied methods for identifying these criteria were statistical techniques and data mining techniques such as decision tree regression and artificial neural networks. The goal of all studies was making a new model for identifying factors associated with LOS or was evaluating other methods introduced in other studies.
    Conclusion
    Findings of this study represent that identifying factors associated with LOS can be variable according to data collection place, studied variables, and applied data mining techniques. So we suggest researchers to help hospital managers and planners with identifying and reducing factors associated with LOS.
    Keywords: Factors Association, Length of Stay, Predictive Model, Data Mining
  • سجاد رضایی، شاهرخ یوسف زاده، سید حشمت الله موسوی، احسان کاظم نژاد لیلی، نعیما خدادادی
    سابقه و هدف
    آسیب عضوی مغز می تواند افراد را مستعد ابتلا به اختلال روانی نماید. هدف از پژوهش حاضر ساخت مدل پیشبینی کننده و بررسی عوامل خطرزای پدیدآیی اختلالات روانی پس از وقوع آسیب مغزی تروماتیک (TBI) می باشد.
    مواد و روش ها
    در این مطالعه توصیفی طولی، 238 بیمار مبتلا به TBI (43 زن و 195 مرد) مراجعه کننده به بیمارستان پورسینای رشت از فروردین تا بهمن سال 1388 بهشیوه نمونه گیری غیراحتمالی و پیاپی وارد شدند. همه افراد تحت معاینات جراحی اعصاب و روانشناختی قرار گرفتند. پس از گذشت 4 ماه پیگیری، 1/65 درصد (155 نفر) از بیماران جهت تعیین ماهیت اختلال روانی ناشی از TBI با استفاده از مصاحبه ساختاریافته بالینی بر پایه ضوابط تشخیصی D SM-IV به روانپزشک مراجعه نمودند. داده ها با استفاده از رگرسیون لجستیک تحلیل شدند.
    نتایج
    یافته ها نشان داد که پس از آسیبدیدگی، 48/75 درصد (117نفر) دارای تشخیص اختلالات روانی ثانوی بر TBIهستند. نتایج رگرسیون لجستیک نیز نشان داد که شدت TBI (712/9 - 259/1 CI 95 درصد، 497/3= OR)، وجود آسیب تحت جمجمه ای (857/7 - 022/1 CI 95 درصد، 834/2 = OR) و افت سطح سازشیافتگی عمومی پس از تروما، همان طور که توسط نسخه مناسبسازیشده 28-GHQ سنجیده میشد (111/1 - 035/1 CI 95 درصد، 072/1 = OR) شانس ابتلا به اختلالات روانی را افزایش می دهند.
    نتیجه گیری
    پدیدآیی اختلالات روانی پس از TBI پیوند تنگاتنگی با عوامل آسیبشناختی عضوی مغز (شدتTBI و وجود آسیب تحتجمجمهای) دارد، اما در این میان نباید از نقش عوامل تاثیرگذار روانشناختی نظیر سطح سازشیافتگی عمومی پس از تروما نیز غافل بود. هم چنین، بهمنظور پیشبینی افرادی که در معرض خطر بروز اختلال روانی پس از TBI هستند، میتوان از مدل کارآمد ساخته شده در این پژوهش استفاده نمود.
    کلید واژگان: آسیب مغزی تروماتیک، اختلالات روانی، عوامل خطرزا، مدل پیشبینی کننده
    Sajad Rezaei, Shahrokh Yousefzadeh, Sayyed Heshmatollah Moosavi, Ehsan Kazemnejad, Naeima Khodadadi
    Background
    Organic brain damage can predispose individuals to mental disorders. This study aimed to design a predictive model to determine the risk factors of mental disorders following traumatic brain injury (TBI).
    Materials And Methods
    In this descriptive-longitudinal study، 238 patients (43 women and 195 men) with TBI referred to Poursina hospital (Rasht، Iran) were selected by the non-probability and consecutive sampling from March to February 2010. Neurosurgical and psychological examinations were performed on all patients. After 4-month follow-up، 65. 1% (155 cases) of the patients referred to a psychiatrist to determine the nature of mental disorder due to TBI using a structured clinical interview based on the DSM-IV diagnostic criteria. Data were analyzed using logistic regression.
    Results
    Findings showed that 117 post-injury cases (75. 48%) of mental disorders‎ were secondary to TBI. Logistic regression results indicated the severity of TBI (OR = 3. 497، ‎95% CI 1. 259-9. 712‎)، presence of subcranial injury (OR = ‎2. 834، ‎95% CI 1. 022-7. 857‎) and falling levels of general compatibility after trauma، as it was measured by the modified version for GHQ-28 (OR = 1. 072، ‎95% CI 1. 035-1. 111)، are associated with increased risk of mental disorders.
    Conclusion
    There is a close relationship between the development of post-TBI mental disorders and organic brain pathology (TBI severity and subcranial injury)، but the role of the effective psychological factors such as the level of general compatibility post-trauma should not be neglected. Moreover، to predict those who have been considered to be at high risk of the mental disorders after TBI، the model presented in this study can be effective.
    Keywords: Traumatic brain injury, Mental disorders, Risk factors, Predictive model
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال