Decreasing in misclassification of determination thyroid disease in Shoushtar town using tree boosting algorithm
Background and Objectives
Thyroid is a vital gland, which affect all of the body oragans such as heart, digestive system, kidney and so on. The intention of this research is to decreas in wrong determination of normal thyroid gland from abnormal using boosting algorithm. This algorithm is a powerful method in diagnosis and prognosis. It iteratively grows base classifer on a sequence of reweighted datasets then takes a linear combination of consequencs and we hope improves accuracy at final.
Material and Methods
A total of 103 patients’ data corrolated to November 2010 until November 2011 from Shoushtar salamat laboratory were analyzed for detemination thyroid gland state. Conventional decision trees and boosting decision trees were made for diagnosis normal thyroid gland from abnormal thyroid gland using R softwere vedersion 3.0.1.
Our findings revealed that for conventional decision trees misclassification rate, sensitivity and specificity with test set were 0.088, 0.91 and 0.92 respectively. However these figures considered by boosting desion trees were 0.029, 0.955 and 1 crrespondingly. Conclution: The boosting decision trees had possibily superior sucsses in diagnosis normal tiroid gland ftom unnormal. So using boosting decisin trees propose in determination thyroid gland state.
Journal of North Khorasan University of Medical Sciences, Volume:7 Issue:2, 2015
381 - 391  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!