Comparison of WORLD VIEW2 , PLEIDES2 and IRS LISSIII satellites capability for estimating stand volume of forest ( case study: Darabkola Experimental Forest)
Message:
Abstract:
Background And Objectives
Investigation on quantitative characteristics of forest such as Stand volume is one of the most important principles in planning and forest management decision. The aim of this study is comparison of various satellites data capability and non-parametric methods for estimating stand volume of forest.
Materials And Methods
The studied area is district 1 Darabkola forest in Mazandaran province in southeast of Sari with 2612 hectares which is located in 74 basin of Sari natural recourses Department. Using systematic-random with 10 R.sample plots with 300m×500m sampling net system were measured150 circular sample plots. The necessary preprocessing and processing include ratio, vegetation index, Principal Component Analysis and texture analyse were done on WorldView-2¡ Pleiades-2 and IRS-LISS III imagery . For modeling in this study be used different regression methods include different variants of k-Nearest Niebuhr, kernel machine support vector and random forest .
Results
The results of modeling the stand volume using machine support vector showed that the best kernel in order for worldview- 2,IRS-LISS III and Pleiades-2 satellites was Polynomial,RBFand Polynomial with %RMSE equal to 34/57,49/5 and 43/03.The best variant in k-Nearest Niebuhr in order for said satellites was chebychev,chebychev and City block with %RMSE equal to 41/18,55/09 and 46/97. %RMSE in random forest method in order for said satellites was 31/33,48/91 and 45/68. Results showed random forest was the best model for estimation stand volume and WorldVeiw-2 satellite data has the best result with percent root mean square error and bias of estimation equal to 31.33 and 2.8 percent.Because of more bands and less width of them, WorldView-2 satellite has better outcomes than Pleiades-2 satellite; since if there are more bands and width of them is narrower, information can be saved in different bands and ratio of signal to noise will be increased. Therefore, phenomenon detects better and accuracy of outcomes increases.
Conclusion
The results did not show much difference between the non-parametric algorithms in terms of Percent Root Mean Square Error, but a large difference was observed in terms of sensors. Overall results of this study showed sensors and Regression methods used in this study have a relatively high capability in estimation of forest stand volume . The results also show in addition to the spatial resolution of satellites their spectral resolution has a significant impact on raising the accuracy of the forest stand volume modeling results using satellite images .
Article Type:
Research/Original Article
Language:
Persian
Published:
Wood & Forest Science and Technology, Volume:24 Issue: 4, 2018
Pages:
133 - 148
magiran.com/p1801674  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
پرداخت با کارتهای اعتباری بین المللی از طریق PayPal امکانپذیر است.
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.