Spatial prediction of shallow landslides using statistical and machine learning models (case study: Sarkhoon watershed)
Landslide susceptibility mapping is considered as the first important step in landslide risk assessment. The main purpose of this study is to compare the performance of a machine learning algorithm (a logistic model tree), and a statistical model (a logistic regression), for landslide susceptibility modeling in the Sarkhoon watershed, Chaharmahal and Bakhtiari province. For this purpose, at first, a landslide inventory map including a total of 98 landslide locations was constructed using historical landslides, and extensive field surveys. In addition, a total of 100 non-landslide locations were also identified to construct a database. The landslide and non-landslide locations were randomly selected and divided into two groups with a 70/30 ratio for modelling and validation processes. Twenty conditioning factors were selected based on literature review and geo-environmental properties in the study area. Subsequently, the logistic model tree (LMT) and the logistic regression (LR) models were applied to identify the influence of conditioning factors on landslide occurrence. Finally, the performance of the models in landslide susceptibility mapping was investigated using the area under the receiver operating characteristics curve (AUC). The results concluded that the LR model (AUC = 0.797) outperformed and outclassed the LMT (AUC = 0.740) model in the study area. Although both models were reliable tools for spatial prediction of landslide susceptibility; however, the LR model was more accurate that it can be proposed as an alternative tool for better management of areas prone to landslide in the study area.
Article Type:
Research/Original Article
Journal of Range and Watershed Management, Volume:71 Issue: 4, 2019
869 - 884  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.